-
Je něco špatně v tomto záznamu ?
Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept
M. Černík, J. Nosek, J. Filip, J. Hrabal, DW. Elliott, R. Zbořil,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- chemické látky znečišťující vodu * MeSH
- kovové nanočástice * MeSH
- nanočástice * MeSH
- podzemní voda * MeSH
- trichlorethylen * MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.
Geosyntec Consultants 7 Graphics Drive Ewing NJ USA
MEGA a s Pod Vinicí 87 CZ 47127 Stráž pod Ralskem Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19044960
- 003
- CZ-PrNML
- 005
- 20200113081526.0
- 007
- ta
- 008
- 200109s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.watres.2019.01.058 $2 doi
- 035 __
- $a (PubMed)30822596
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Černík, Miroslav $u Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic.
- 245 10
- $a Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept / $c M. Černík, J. Nosek, J. Filip, J. Hrabal, DW. Elliott, R. Zbořil,
- 520 9_
- $a The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.
- 650 12
- $a podzemní voda $7 D060587
- 650 _2
- $a železo $7 D007501
- 650 12
- $a kovové nanočástice $7 D053768
- 650 12
- $a nanočástice $7 D053758
- 650 12
- $a trichlorethylen $7 D014241
- 650 12
- $a chemické látky znečišťující vodu $7 D014874
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nosek, Jaroslav $u Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic.
- 700 1_
- $a Filip, Jan $u Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic. Electronic address: jan.filip@upol.cz.
- 700 1_
- $a Hrabal, Jaroslav $u MEGA a.s., Pod Vinicí 87, CZ-47127, Stráž pod Ralskem, Czech Republic.
- 700 1_
- $a Elliott, Daniel W $u Geosyntec Consultants, 7 Graphics Drive, Ewing, NJ, USA.
- 700 1_
- $a Zbořil, Radek $u Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
- 773 0_
- $w MED00008324 $t Water research $x 1879-2448 $g Roč. 154, č. - (2019), s. 361-369
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30822596 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113081858 $b ABA008
- 999 __
- $a ok $b bmc $g 1483229 $s 1083633
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 154 $c - $d 361-369 $e 20190215 $i 1879-2448 $m Water research $n Water Res $x MED00008324
- LZP __
- $a Pubmed-20200109