• Je něco špatně v tomto záznamu ?

Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept

M. Černík, J. Nosek, J. Filip, J. Hrabal, DW. Elliott, R. Zbořil,

. 2019 ; 154 (-) : 361-369. [pub] 20190215

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19044960

The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044960
003      
CZ-PrNML
005      
20200113081526.0
007      
ta
008      
200109s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.watres.2019.01.058 $2 doi
035    __
$a (PubMed)30822596
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Černík, Miroslav $u Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic.
245    10
$a Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept / $c M. Černík, J. Nosek, J. Filip, J. Hrabal, DW. Elliott, R. Zbořil,
520    9_
$a The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.
650    12
$a podzemní voda $7 D060587
650    _2
$a železo $7 D007501
650    12
$a kovové nanočástice $7 D053768
650    12
$a nanočástice $7 D053758
650    12
$a trichlorethylen $7 D014241
650    12
$a chemické látky znečišťující vodu $7 D014874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nosek, Jaroslav $u Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic.
700    1_
$a Filip, Jan $u Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic. Electronic address: jan.filip@upol.cz.
700    1_
$a Hrabal, Jaroslav $u MEGA a.s., Pod Vinicí 87, CZ-47127, Stráž pod Ralskem, Czech Republic.
700    1_
$a Elliott, Daniel W $u Geosyntec Consultants, 7 Graphics Drive, Ewing, NJ, USA.
700    1_
$a Zbořil, Radek $u Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
773    0_
$w MED00008324 $t Water research $x 1879-2448 $g Roč. 154, č. - (2019), s. 361-369
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30822596 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113081858 $b ABA008
999    __
$a ok $b bmc $g 1483229 $s 1083633
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 154 $c - $d 361-369 $e 20190215 $i 1879-2448 $m Water research $n Water Res $x MED00008324
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...