Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering

NY. Kostina, S. Blanquer, O. Pop-Georgievski, K. Rahimi, B. Dittrich, A. Höcherl, J. Michálek, DW. Grijpma, C. Rodriguez-Emmenegger,

. 2019 ; 19 (4) : e1800403. [pub] 20190115

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045048

Grantová podpora
Alexander von Humboldt Foundation - International
16-02702S Grant Agency of the Czech Republic (GACR) - International
16-04863S Grant Agency of the Czech Republic (GACR) - International
POLYMAT #LO1507 Ministry of Education, Youth and Sports of the Czech Republic - International

Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM). The copolymerization with zwitterionic comonomer leads hydrogels with high equilibrium water content (EWC), up to 700% while maintaining mechanical robustness. The introduction of carboxybetaine yields excellent resistance to nonspecific protein adsorption while providing a facile way for specific biofunctionalization with a model protein, fluorescein isothiocyanate labeled bovine serum albumin (BSA). The homogeneous protein immobilization across the hydrogel pores prove the accessibility to the innermost pore volumes. The remarkably low protein adsorption combined with the interconnected nature of the porosity allowing fast diffusion of nutrient and waste product and the mimicry of bone trabecular, makes the hydrogels presented here highly attractive for tissue engineering.

000      
00000naa a2200000 a 4500
001      
bmc19045048
003      
CZ-PrNML
005      
20200115125321.0
007      
ta
008      
200109s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mabi.201800403 $2 doi
035    __
$a (PubMed)30645020
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Kostina, Nina Yu $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
245    10
$a Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering / $c NY. Kostina, S. Blanquer, O. Pop-Georgievski, K. Rahimi, B. Dittrich, A. Höcherl, J. Michálek, DW. Grijpma, C. Rodriguez-Emmenegger,
520    9_
$a Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM). The copolymerization with zwitterionic comonomer leads hydrogels with high equilibrium water content (EWC), up to 700% while maintaining mechanical robustness. The introduction of carboxybetaine yields excellent resistance to nonspecific protein adsorption while providing a facile way for specific biofunctionalization with a model protein, fluorescein isothiocyanate labeled bovine serum albumin (BSA). The homogeneous protein immobilization across the hydrogel pores prove the accessibility to the innermost pore volumes. The remarkably low protein adsorption combined with the interconnected nature of the porosity allowing fast diffusion of nutrient and waste product and the mimicry of bone trabecular, makes the hydrogels presented here highly attractive for tissue engineering.
650    _2
$a zvířata $7 D000818
650    _2
$a skot $7 D002417
650    _2
$a hydrogely $x chemie $7 D020100
650    _2
$a methakryláty $x chemie $7 D008689
650    _2
$a poréznost $7 D016062
650    12
$a tkáňové inženýrství $7 D023822
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Blanquer, Sebastien $u Institute Charles Gerhardt Montpellier, CNRS-University of Montpellier-ENSCM, 34095, Montpellier, Cedex 5, France.
700    1_
$a Pop-Georgievski, Ognen $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
700    1_
$a Rahimi, Khosrow $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
700    1_
$a Dittrich, Barbara $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
700    1_
$a Höcherl, Anita $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
700    1_
$a Michálek, Jiří $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
700    1_
$a Grijpma, Dirk W $u Department of Biomaterials Science and Technology Group, Technical Medical Centre, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands. W.J. Kolff Institute, Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, The Netherlands.
700    1_
$a Rodriguez-Emmenegger, Cesar $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
773    0_
$w MED00006593 $t Macromolecular bioscience $x 1616-5195 $g Roč. 19, č. 4 (2019), s. e1800403
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30645020 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200115125654 $b ABA008
999    __
$a ok $b bmc $g 1483317 $s 1083721
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 19 $c 4 $d e1800403 $e 20190115 $i 1616-5195 $m Macromolecular bioscience $n Macromol Biosci $x MED00006593
GRA    __
$p Alexander von Humboldt Foundation $2 International
GRA    __
$a 16-02702S $p Grant Agency of the Czech Republic (GACR) $2 International
GRA    __
$a 16-04863S $p Grant Agency of the Czech Republic (GACR) $2 International
GRA    __
$a POLYMAT #LO1507 $p Ministry of Education, Youth and Sports of the Czech Republic $2 International
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...