-
Je něco špatně v tomto záznamu ?
Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering
NY. Kostina, S. Blanquer, O. Pop-Georgievski, K. Rahimi, B. Dittrich, A. Höcherl, J. Michálek, DW. Grijpma, C. Rodriguez-Emmenegger,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Alexander von Humboldt Foundation - International
16-02702S
Grant Agency of the Czech Republic (GACR) - International
16-04863S
Grant Agency of the Czech Republic (GACR) - International
POLYMAT #LO1507
Ministry of Education, Youth and Sports of the Czech Republic - International
PubMed
30645020
DOI
10.1002/mabi.201800403
Knihovny.cz E-zdroje
- MeSH
- hydrogely chemie MeSH
- methakryláty chemie MeSH
- poréznost MeSH
- skot MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM). The copolymerization with zwitterionic comonomer leads hydrogels with high equilibrium water content (EWC), up to 700% while maintaining mechanical robustness. The introduction of carboxybetaine yields excellent resistance to nonspecific protein adsorption while providing a facile way for specific biofunctionalization with a model protein, fluorescein isothiocyanate labeled bovine serum albumin (BSA). The homogeneous protein immobilization across the hydrogel pores prove the accessibility to the innermost pore volumes. The remarkably low protein adsorption combined with the interconnected nature of the porosity allowing fast diffusion of nutrient and waste product and the mimicry of bone trabecular, makes the hydrogels presented here highly attractive for tissue engineering.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045048
- 003
- CZ-PrNML
- 005
- 20200115125321.0
- 007
- ta
- 008
- 200109s2019 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mabi.201800403 $2 doi
- 035 __
- $a (PubMed)30645020
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Kostina, Nina Yu $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
- 245 10
- $a Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering / $c NY. Kostina, S. Blanquer, O. Pop-Georgievski, K. Rahimi, B. Dittrich, A. Höcherl, J. Michálek, DW. Grijpma, C. Rodriguez-Emmenegger,
- 520 9_
- $a Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM). The copolymerization with zwitterionic comonomer leads hydrogels with high equilibrium water content (EWC), up to 700% while maintaining mechanical robustness. The introduction of carboxybetaine yields excellent resistance to nonspecific protein adsorption while providing a facile way for specific biofunctionalization with a model protein, fluorescein isothiocyanate labeled bovine serum albumin (BSA). The homogeneous protein immobilization across the hydrogel pores prove the accessibility to the innermost pore volumes. The remarkably low protein adsorption combined with the interconnected nature of the porosity allowing fast diffusion of nutrient and waste product and the mimicry of bone trabecular, makes the hydrogels presented here highly attractive for tissue engineering.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a hydrogely $x chemie $7 D020100
- 650 _2
- $a methakryláty $x chemie $7 D008689
- 650 _2
- $a poréznost $7 D016062
- 650 12
- $a tkáňové inženýrství $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Blanquer, Sebastien $u Institute Charles Gerhardt Montpellier, CNRS-University of Montpellier-ENSCM, 34095, Montpellier, Cedex 5, France.
- 700 1_
- $a Pop-Georgievski, Ognen $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
- 700 1_
- $a Rahimi, Khosrow $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
- 700 1_
- $a Dittrich, Barbara $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
- 700 1_
- $a Höcherl, Anita $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
- 700 1_
- $a Michálek, Jiří $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i. Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
- 700 1_
- $a Grijpma, Dirk W $u Department of Biomaterials Science and Technology Group, Technical Medical Centre, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands. W.J. Kolff Institute, Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, The Netherlands.
- 700 1_
- $a Rodriguez-Emmenegger, Cesar $u DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany.
- 773 0_
- $w MED00006593 $t Macromolecular bioscience $x 1616-5195 $g Roč. 19, č. 4 (2019), s. e1800403
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30645020 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200115125654 $b ABA008
- 999 __
- $a ok $b bmc $g 1483317 $s 1083721
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 19 $c 4 $d e1800403 $e 20190115 $i 1616-5195 $m Macromolecular bioscience $n Macromol Biosci $x MED00006593
- GRA __
- $p Alexander von Humboldt Foundation $2 International
- GRA __
- $a 16-02702S $p Grant Agency of the Czech Republic (GACR) $2 International
- GRA __
- $a 16-04863S $p Grant Agency of the Czech Republic (GACR) $2 International
- GRA __
- $a POLYMAT #LO1507 $p Ministry of Education, Youth and Sports of the Czech Republic $2 International
- LZP __
- $a Pubmed-20200109