Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Insect fat body cell morphology and response to cold stress is modulated by acclimation

LE. Des Marteaux, T. Štětina, V. Koštál,

. 2018 ; 221 (Pt 21) : . [pub] 20181031

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Mechanistic understanding about the nature of cellular cryoinjury and mechanisms by which some animals survive freezing while others do not is currently lacking. Here, we exploited the broadly manipulable freeze tolerance of larval malt flies (Chymomyza costata) to uncover cell and tissue morphological changes associated with freeze mortality. Diapause induction, cold acclimation and dietary proline supplementation generate malt fly variants ranging from weakly to extremely freeze tolerant. Using confocal microscopy and immunostaining of the fat body, Malpighian tubules and anterior midgut, we described tissue and cytoskeletal (F-actin and α-tubulin) morphologies among these variants after exposure to various cold stresses (from chilling at -5°C to extreme freezing at -196°C), and upon recovery from cold exposure. Fat body tissue appeared to be the most susceptible to cryoinjury: freezing caused coalescence of lipid droplets, loss of α-tubulin structure and apparent aggregation of F-actin. A combination of diapause and cold acclimation substantially lowered the temperature at which these morphological disruptions occurred. Larvae that recovered from a freezing challenge repaired F-actin aggregation but not lipid droplet coalescence or α-tubulin structure. Our observations indicate that lipid coalescence and damage to α-tubulin are non-lethal forms of freeze injury, and suggest that repair or removal (rather than protection) of actin proteins is a potential mechanism of acquired freeze tolerance.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045256
003      
CZ-PrNML
005      
20200120085622.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1242/jeb.189647 $2 doi
035    __
$a (PubMed)30190314
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Des Marteaux, Lauren E $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic ldesmart@uwo.ca.
245    10
$a Insect fat body cell morphology and response to cold stress is modulated by acclimation / $c LE. Des Marteaux, T. Štětina, V. Koštál,
520    9_
$a Mechanistic understanding about the nature of cellular cryoinjury and mechanisms by which some animals survive freezing while others do not is currently lacking. Here, we exploited the broadly manipulable freeze tolerance of larval malt flies (Chymomyza costata) to uncover cell and tissue morphological changes associated with freeze mortality. Diapause induction, cold acclimation and dietary proline supplementation generate malt fly variants ranging from weakly to extremely freeze tolerant. Using confocal microscopy and immunostaining of the fat body, Malpighian tubules and anterior midgut, we described tissue and cytoskeletal (F-actin and α-tubulin) morphologies among these variants after exposure to various cold stresses (from chilling at -5°C to extreme freezing at -196°C), and upon recovery from cold exposure. Fat body tissue appeared to be the most susceptible to cryoinjury: freezing caused coalescence of lipid droplets, loss of α-tubulin structure and apparent aggregation of F-actin. A combination of diapause and cold acclimation substantially lowered the temperature at which these morphological disruptions occurred. Larvae that recovered from a freezing challenge repaired F-actin aggregation but not lipid droplet coalescence or α-tubulin structure. Our observations indicate that lipid coalescence and damage to α-tubulin are non-lethal forms of freeze injury, and suggest that repair or removal (rather than protection) of actin proteins is a potential mechanism of acquired freeze tolerance.
650    12
$a aklimatizace $7 D000064
650    _2
$a zvířata $7 D000818
650    _2
$a nízká teplota $x škodlivé účinky $7 D003080
650    _2
$a cytoskelet $x fyziologie $7 D003599
650    _2
$a Drosophilidae $x cytologie $x růst a vývoj $x fyziologie $7 D018428
650    _2
$a tukové těleso $x cytologie $7 D005216
650    _2
$a gastrointestinální trakt $x cytologie $x fyziologie $7 D041981
650    _2
$a larva $x cytologie $x růst a vývoj $x fyziologie $7 D007814
650    _2
$a malpighické trubice $x cytologie $x fyziologie $7 D008317
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Štětina, Tomáš $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
700    1_
$a Koštál, Vladimír $u Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic.
773    0_
$w MED00002666 $t The Journal of experimental biology $x 1477-9145 $g Roč. 221, č. Pt 21 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30190314 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200120085958 $b ABA008
999    __
$a ok $b bmc $g 1483525 $s 1083929
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 221 $c Pt 21 $e 20181031 $i 1477-9145 $m Journal of experimental biology $n J Exp Biol $x MED00002666
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...