• Je něco špatně v tomto záznamu ?

Noise-robust speech triage

AL. Bartos, T. Cipr, DJ. Nelson, P. Schwarz, J. Banowetz, L. Jerabek,

. 2018 ; 143 (4) : 2313. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045471

A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045471
003      
CZ-PrNML
005      
20200120100744.0
007      
ta
008      
200109s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1121/1.5031029 $2 doi
035    __
$a (PubMed)29716295
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bartos, Anthony L $u Suzanne R. Miller Associates, Marriotsville, Maryland 21104, USA.
245    10
$a Noise-robust speech triage / $c AL. Bartos, T. Cipr, DJ. Nelson, P. Schwarz, J. Banowetz, L. Jerabek,
520    9_
$a A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).
650    12
$a algoritmy $7 D000465
650    _2
$a lidé $7 D006801
650    12
$a hluk $7 D009622
650    _2
$a počítačové zpracování signálu $7 D012815
650    12
$a poměr signál - šum $7 D059629
650    12
$a řeč $7 D013060
650    _2
$a percepce řeči $x fyziologie $7 D013067
655    _2
$a časopisecké články $7 D016428
700    1_
$a Cipr, Tomas $u Phonexia Limited and Brno University of Technology, Brno, Czech Republic.
700    1_
$a Nelson, Douglas J $u United States Department of Defense, 9800 Savage Road, Fort Meade, Maryland 20755, USA.
700    1_
$a Schwarz, Petr $u Phonexia Limited and Brno University of Technology, Brno, Czech Republic.
700    1_
$a Banowetz, John $u Naval Research Laboratory, Washington, DC 20375, USA.
700    1_
$a Jerabek, Ladislav $u Suzanne R. Miller Associates, Marriotsville, Maryland 21104, USA.
773    0_
$w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 143, č. 4 (2018), s. 2313
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29716295 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200120101120 $b ABA008
999    __
$a ok $b bmc $g 1483740 $s 1084144
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 143 $c 4 $d 2313 $e - $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...