• Je něco špatně v tomto záznamu ?

Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps

K. Yokawa, T. Kagenishi, A. Pavlovic, S. Gall, M. Weiland, S. Mancuso, F. Baluška,

. 2018 ; 122 (5) : 747-756. [pub] 20181103

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045577
E-zdroje Online Plný text

NLK PubMed Central od 1995 do Před 1 rokem
Europe PubMed Central od 1995 do Před 1 rokem
Open Access Digital Library od 1993-01-01
Medline Complete (EBSCOhost) od 1996-01-01 do Před 1 rokem

Background and Aims: Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods: A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results: Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions: Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045577
003      
CZ-PrNML
005      
20200113082410.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/aob/mcx155 $2 doi
035    __
$a (PubMed)29236942
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Yokawa, K $u IZMB, University of Bonn, Bonn, Germany. Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
245    10
$a Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps / $c K. Yokawa, T. Kagenishi, A. Pavlovic, S. Gall, M. Weiland, S. Mancuso, F. Baluška,
520    9_
$a Background and Aims: Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods: A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results: Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions: Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
650    _2
$a akční potenciály $x účinky léků $x fyziologie $7 D000200
650    _2
$a anestetika $x škodlivé účinky $7 D000777
650    _2
$a Arabidopsis $x účinky léků $x fyziologie $7 D017360
650    _2
$a chlorofyl $x metabolismus $7 D002734
650    _2
$a Drosera $x účinky léků $x fyziologie $7 D029787
650    _2
$a Droseraceae $x účinky léků $x fyziologie $7 D031257
650    _2
$a ether $x škodlivé účinky $7 D004986
650    _2
$a klíčení $x účinky léků $7 D018525
650    12
$a homeostáza $7 D006706
650    _2
$a Lepidium sativum $x účinky léků $x fyziologie $7 D031220
650    _2
$a Magnoliopsida $x účinky léků $x fyziologie $7 D019684
650    _2
$a Mimosa $x účinky léků $x fyziologie $7 D031298
650    _2
$a organely $x účinky léků $x fyziologie $7 D015388
650    _2
$a hrách setý $x účinky léků $x fyziologie $7 D018532
650    _2
$a listy rostlin $x účinky léků $x fyziologie $7 D018515
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a transportní vezikuly $x účinky léků $x fyziologie $7 D022161
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kagenishi, T $u IZMB, University of Bonn, Bonn, Germany. Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
700    1_
$a Pavlovic, A $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic.
700    1_
$a Gall, S $u IZMB, University of Bonn, Bonn, Germany.
700    1_
$a Weiland, M $u IZMB, University of Bonn, Bonn, Germany. Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy.
700    1_
$a Mancuso, S $u Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy.
700    1_
$a Baluška, F $u IZMB, University of Bonn, Bonn, Germany.
773    0_
$w MED00000419 $t Annals of botany $x 1095-8290 $g Roč. 122, č. 5 (2018), s. 747-756
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29236942 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113082742 $b ABA008
999    __
$a ok $b bmc $g 1483845 $s 1084250
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 122 $c 5 $d 747-756 $e 20181103 $i 1095-8290 $m Annals of botany $n Ann. bot. (Print) $x MED00000419
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...