• Something wrong with this record ?

Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types

DM. Hughes, A. Komárek, G. Czanner, M. Garcia-Fiñana,

. 2018 ; 27 (7) : 2060-2080. [pub] 20161026

Language English Country Great Britain

Document type Journal Article

There is an emerging need in clinical research to accurately predict patients' disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts). In this paper, we present a flexible and dynamic (time-dependent) discriminant analysis approach in which multiple biomarkers of various types are jointly modelled for classification purposes by the multivariate generalized linear mixed model. We propose a mixture of normal distributions for the random effects to allow additional flexibility when modelling the complex correlation between longitudinal biomarkers and to robustify the model and the classification procedure against misspecification of the random effects distribution. These longitudinal models are subsequently used in a multivariate time-dependent discriminant scheme to predict, at any time point, the probability of belonging to a particular risk group. The methodology is illustrated using clinical data from patients with epilepsy, where the aim is to identify patients who will not achieve remission of seizures within a five-year follow-up period.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045616
003      
CZ-PrNML
005      
20200120083157.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/0962280216674496 $2 doi
035    __
$a (PubMed)27789653
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hughes, David M $u 1 Department of Biostatistics, University of Liverpool, UK.
245    10
$a Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types / $c DM. Hughes, A. Komárek, G. Czanner, M. Garcia-Fiñana,
520    9_
$a There is an emerging need in clinical research to accurately predict patients' disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts). In this paper, we present a flexible and dynamic (time-dependent) discriminant analysis approach in which multiple biomarkers of various types are jointly modelled for classification purposes by the multivariate generalized linear mixed model. We propose a mixture of normal distributions for the random effects to allow additional flexibility when modelling the complex correlation between longitudinal biomarkers and to robustify the model and the classification procedure against misspecification of the random effects distribution. These longitudinal models are subsequently used in a multivariate time-dependent discriminant scheme to predict, at any time point, the probability of belonging to a particular risk group. The methodology is illustrated using clinical data from patients with epilepsy, where the aim is to identify patients who will not achieve remission of seizures within a five-year follow-up period.
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a algoritmy $7 D000465
650    12
$a biologické markery $7 D015415
650    _2
$a dítě $7 D002648
650    _2
$a předškolní dítě $7 D002675
650    12
$a diskriminační analýza $7 D016002
650    12
$a progrese nemoci $7 D018450
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a longitudinální studie $7 D008137
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Komárek, Arnošt $u 2 Charles University, Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Prague, Czech Republic.
700    1_
$a Czanner, Gabriela $u 1 Department of Biostatistics, University of Liverpool, UK. 3 Department of Eye and Vision Science, University of Liverpool, UK.
700    1_
$a Garcia-Fiñana, Marta $u 1 Department of Biostatistics, University of Liverpool, UK.
773    0_
$w MED00006126 $t Statistical methods in medical research $x 1477-0334 $g Roč. 27, č. 7 (2018), s. 2060-2080
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27789653 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200120083533 $b ABA008
999    __
$a ok $b bmc $g 1483884 $s 1084289
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 27 $c 7 $d 2060-2080 $e 20161026 $i 1477-0334 $m Statistical methods in medical research $n Stat Methods Med Res $x MED00006126
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...