-
Je něco špatně v tomto záznamu ?
Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis
CT. Ho, T. Grousl, O. Shatz, A. Jawed, C. Ruger-Herreros, M. Semmelink, R. Zahn, K. Richter, B. Bukau, A. Mogk,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- homeostáze proteinů * MeSH
- proteiny tepelného šoku HSP40 metabolismus MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- proteiny teplotního šoku metabolismus MeSH
- refolding proteinů MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- transportní systémy aminokyselin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Maintenance of cellular proteostasis is achieved by a multi-layered quality control network, which counteracts the accumulation of misfolded proteins by refolding and degradation pathways. The organized sequestration of misfolded proteins, actively promoted by cellular sequestrases, represents a third strategy of quality control. Here we determine the role of sequestration within the proteostasis network in Saccharomyces cerevisiae and the mechanism by which it occurs. The Hsp42 and Btn2 sequestrases are functionally intertwined with the refolding activity of the Hsp70 system. Sequestration of misfolded proteins by Hsp42 and Btn2 prevents proteostasis collapse and viability loss in cells with limited Hsp70 capacity, likely by shielding Hsp70 from misfolded protein overload. Btn2 has chaperone and sequestrase activity and shares features with small heat shock proteins. During stress recovery Btn2 recruits the Hsp70-Hsp104 disaggregase by directly interacting with the Hsp70 co-chaperone Sis1, thereby shunting sequestered proteins to the refolding pathway.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005761
- 003
- CZ-PrNML
- 005
- 20200518132057.0
- 007
- ta
- 008
- 200511s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-019-12868-1 $2 doi
- 035 __
- $a (PubMed)31649258
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Ho, Chi-Ting $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 245 10
- $a Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis / $c CT. Ho, T. Grousl, O. Shatz, A. Jawed, C. Ruger-Herreros, M. Semmelink, R. Zahn, K. Richter, B. Bukau, A. Mogk,
- 520 9_
- $a Maintenance of cellular proteostasis is achieved by a multi-layered quality control network, which counteracts the accumulation of misfolded proteins by refolding and degradation pathways. The organized sequestration of misfolded proteins, actively promoted by cellular sequestrases, represents a third strategy of quality control. Here we determine the role of sequestration within the proteostasis network in Saccharomyces cerevisiae and the mechanism by which it occurs. The Hsp42 and Btn2 sequestrases are functionally intertwined with the refolding activity of the Hsp70 system. Sequestration of misfolded proteins by Hsp42 and Btn2 prevents proteostasis collapse and viability loss in cells with limited Hsp70 capacity, likely by shielding Hsp70 from misfolded protein overload. Btn2 has chaperone and sequestrase activity and shares features with small heat shock proteins. During stress recovery Btn2 recruits the Hsp70-Hsp104 disaggregase by directly interacting with the Hsp70 co-chaperone Sis1, thereby shunting sequestered proteins to the refolding pathway.
- 650 _2
- $a transportní systémy aminokyselin $x metabolismus $7 D026905
- 650 _2
- $a proteiny tepelného šoku HSP40 $x metabolismus $7 D050956
- 650 _2
- $a proteiny tepelného šoku HSP70 $x metabolismus $7 D018840
- 650 _2
- $a proteiny teplotního šoku $x metabolismus $7 D006360
- 650 _2
- $a refolding proteinů $7 D058849
- 650 12
- $a homeostáze proteinů $7 D000074702
- 650 _2
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x metabolismus $7 D029701
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Grousl, Tomas $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Shatz, Oren $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Jawed, Areeb $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Ruger-Herreros, Carmen $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Semmelink, Marije $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Zahn, Regina $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Richter, Karsten $u German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- 700 1_
- $a Bukau, Bernd $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. bukau@zmbh.uni-heidelberg.de. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. bukau@zmbh.uni-heidelberg.de.
- 700 1_
- $a Mogk, Axel $u Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany. a.mogk@zmbh.uni-heidelberg.de. German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. a.mogk@zmbh.uni-heidelberg.de.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 10, č. 1 (2019), s. 4851
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31649258 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132056 $b ABA008
- 999 __
- $a ok $b bmc $g 1524619 $s 1095817
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 10 $c 1 $d 4851 $e 20191024 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20200511