• Je něco špatně v tomto záznamu ?

Turing complete neural computation based on synaptic plasticity

J. Cabessa,

. 2019 ; 14 (10) : e0223451. [pub] 20191016

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20005793

In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achieved via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter machine-and hence any Turing machine-can be simulated by a rational-weighted recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. The computational states and counter values of the machine are encoded into discrete synaptic strengths. The transitions between those synaptic weights are then achieved via STDP. These considerations show that a Turing complete synaptic-based paradigm of neural computation is theoretically possible and potentially exploitable. They support the idea that synapses are not only crucially involved in information processing and learning features, but also in the encoding of essential information. This approach represents a paradigm shift in the field of neural computation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005793
003      
CZ-PrNML
005      
20200518132111.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0223451 $2 doi
035    __
$a (PubMed)31618230
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cabessa, Jérémie $u Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), University Paris 2 - Panthéon-Assas, 75005 Paris, France. Institute of Computer Science, Czech Academy of Sciences, 18207 Prague 8, Czech Republic.
245    10
$a Turing complete neural computation based on synaptic plasticity / $c J. Cabessa,
520    9_
$a In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achieved via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter machine-and hence any Turing machine-can be simulated by a rational-weighted recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. The computational states and counter values of the machine are encoded into discrete synaptic strengths. The transitions between those synaptic weights are then achieved via STDP. These considerations show that a Turing complete synaptic-based paradigm of neural computation is theoretically possible and potentially exploitable. They support the idea that synapses are not only crucially involved in information processing and learning features, but also in the encoding of essential information. This approach represents a paradigm shift in the field of neural computation.
650    _2
$a algoritmy $7 D000465
650    12
$a modely neurologické $7 D008959
650    _2
$a neuronové sítě $7 D016571
650    12
$a neuroplasticita $7 D009473
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a synapse $x fyziologie $7 D013569
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 10 (2019), s. e0223451
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31618230 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132111 $b ABA008
999    __
$a ok $b bmc $g 1524651 $s 1095849
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 10 $d e0223451 $e 20191016 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...