-
Je něco špatně v tomto záznamu ?
Turing complete neural computation based on synaptic plasticity
J. Cabessa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- algoritmy MeSH
- modely neurologické * MeSH
- neuronové sítě MeSH
- neurony fyziologie MeSH
- neuroplasticita * MeSH
- synapse fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achieved via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter machine-and hence any Turing machine-can be simulated by a rational-weighted recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. The computational states and counter values of the machine are encoded into discrete synaptic strengths. The transitions between those synaptic weights are then achieved via STDP. These considerations show that a Turing complete synaptic-based paradigm of neural computation is theoretically possible and potentially exploitable. They support the idea that synapses are not only crucially involved in information processing and learning features, but also in the encoding of essential information. This approach represents a paradigm shift in the field of neural computation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005793
- 003
- CZ-PrNML
- 005
- 20200518132111.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0223451 $2 doi
- 035 __
- $a (PubMed)31618230
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cabessa, Jérémie $u Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), University Paris 2 - Panthéon-Assas, 75005 Paris, France. Institute of Computer Science, Czech Academy of Sciences, 18207 Prague 8, Czech Republic.
- 245 10
- $a Turing complete neural computation based on synaptic plasticity / $c J. Cabessa,
- 520 9_
- $a In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achieved via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter machine-and hence any Turing machine-can be simulated by a rational-weighted recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. The computational states and counter values of the machine are encoded into discrete synaptic strengths. The transitions between those synaptic weights are then achieved via STDP. These considerations show that a Turing complete synaptic-based paradigm of neural computation is theoretically possible and potentially exploitable. They support the idea that synapses are not only crucially involved in information processing and learning features, but also in the encoding of essential information. This approach represents a paradigm shift in the field of neural computation.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a neuronové sítě $7 D016571
- 650 12
- $a neuroplasticita $7 D009473
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a synapse $x fyziologie $7 D013569
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 10 (2019), s. e0223451
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31618230 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132111 $b ABA008
- 999 __
- $a ok $b bmc $g 1524651 $s 1095849
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 14 $c 10 $d e0223451 $e 20191016 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20200511