-
Something wrong with this record ?
Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom
SR. Smith, CL. Dupont, JK. McCarthy, JT. Broddrick, M. Oborník, A. Horák, Z. Füssy, J. Cihlář, S. Kleessen, H. Zheng, JP. McCrow, KK. Hixson, WL. Araújo, A. Nunes-Nesi, A. Fernie, Z. Nikoloski, BO. Palsson, AE. Allen,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Models, Biological MeSH
- Chloroplasts genetics metabolism MeSH
- Nitrates metabolism MeSH
- Nitrogen metabolism MeSH
- Metabolic Networks and Pathways genetics MeSH
- Metabolomics methods MeSH
- Mitochondria genetics metabolism MeSH
- Evolution, Molecular MeSH
- Seawater microbiology MeSH
- Proteomics methods MeSH
- Gene Expression Regulation MeSH
- Diatoms genetics metabolism MeSH
- Signal Transduction genetics MeSH
- Gene Expression Profiling methods MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
Departamento de Biologia Vegetal Universidade Federal de Viçosa Viçosa Minas Gerais 36570 900 Brazil
Department of Bioengineering University of California San Diego La Jolla CA 92093 USA
Max Planck Institut of Molecular Plant Physiology Am Mühlenberg 1 14476 Potsdam Germany
Microbial and Environmental Genomics J Craig Venter Institute La Jolla CA 92037 USA
Targenomix GmbH Wissenschaftspark Potsdam Golm 14476 Potsdam Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005820
- 003
- CZ-PrNML
- 005
- 20200518132122.0
- 007
- ta
- 008
- 200511s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-019-12407-y $2 doi
- 035 __
- $a (PubMed)31591397
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Smith, Sarah R $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- 245 10
- $a Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom / $c SR. Smith, CL. Dupont, JK. McCarthy, JT. Broddrick, M. Oborník, A. Horák, Z. Füssy, J. Cihlář, S. Kleessen, H. Zheng, JP. McCrow, KK. Hixson, WL. Araújo, A. Nunes-Nesi, A. Fernie, Z. Nikoloski, BO. Palsson, AE. Allen,
- 520 9_
- $a Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
- 650 _2
- $a uhlík $x metabolismus $7 D002244
- 650 _2
- $a chloroplasty $x genetika $x metabolismus $7 D002736
- 650 _2
- $a rozsivky $x genetika $x metabolismus $7 D017377
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a stanovení celkové genové exprese $x metody $7 D020869
- 650 _2
- $a regulace genové exprese $7 D005786
- 650 _2
- $a metabolické sítě a dráhy $x genetika $7 D053858
- 650 _2
- $a metabolomika $x metody $7 D055432
- 650 _2
- $a mitochondrie $x genetika $x metabolismus $7 D008928
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a dusičnany $x metabolismus $7 D009566
- 650 _2
- $a dusík $x metabolismus $7 D009584
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a mořská voda $x mikrobiologie $7 D012623
- 650 _2
- $a signální transdukce $x genetika $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Dupont, Chris L $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- 700 1_
- $a McCarthy, James K $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- 700 1_
- $a Broddrick, Jared T $u Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- 700 1_
- $a Oborník, Miroslav $u Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- 700 1_
- $a Horák, Aleš $u Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- 700 1_
- $a Füssy, Zoltán $u Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- 700 1_
- $a Cihlář, Jaromír $u Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic. Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- 700 1_
- $a Kleessen, Sabrina $u Targenomix, GmbH, Wissenschaftspark Potsdam-Golm, 14476, Potsdam, Germany.
- 700 1_
- $a Zheng, Hong $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- 700 1_
- $a McCrow, John P $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- 700 1_
- $a Hixson, Kim K $u Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- 700 1_
- $a Araújo, Wagner L $u Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil. Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- 700 1_
- $a Nunes-Nesi, Adriano $u Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- 700 1_
- $a Fernie, Alisdair $u Max Planck Institut of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
- 700 1_
- $a Nikoloski, Zoran $u Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
- 700 1_
- $a Palsson, Bernhard O $u Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- 700 1_
- $a Allen, Andrew E $u Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA. aallen@jcvi.org. Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, CA, 92093, USA. aallen@jcvi.org.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 10, č. 1 (2019), s. 4552
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31591397 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132122 $b ABA008
- 999 __
- $a ok $b bmc $g 1524678 $s 1095876
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 10 $c 1 $d 4552 $e 20191007 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20200511