-
Je něco špatně v tomto záznamu ?
Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles
T. Urban, P. Waldauf, A. Krajčová, K. Jiroutková, M. Halačová, V. Džupa, L. Janoušek, E. Pokorná, F. Duška,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV16-28663A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Plný text - Článek
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- druhová specificita MeSH
- krysa rodu rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- potkani Wistar MeSH
- propofol farmakologie MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex IV metabolismus MeSH
- senioři MeSH
- srdeční mitochondrie metabolismus MeSH
- svalové mitochondrie metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS: We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS: We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION: In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005827
- 003
- CZ-PrNML
- 005
- 20231108103707.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0217254 $2 doi
- 035 __
- $a (PubMed)31584947
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Urban, Tomáš $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 245 10
- $a Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles / $c T. Urban, P. Waldauf, A. Krajčová, K. Jiroutková, M. Halačová, V. Džupa, L. Janoušek, E. Pokorná, F. Duška,
- 520 9_
- $a INTRODUCTION: Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS: We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS: We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION: In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a respirační komplex I $x metabolismus $7 D042967
- 650 _2
- $a respirační komplex IV $x metabolismus $7 D003576
- 650 _2
- $a mastné kyseliny $x metabolismus $7 D005227
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a srdeční mitochondrie $x metabolismus $7 D008929
- 650 _2
- $a svalové mitochondrie $x metabolismus $7 D008931
- 650 _2
- $a oxidace-redukce $x účinky léků $7 D010084
- 650 _2
- $a propofol $x farmakologie $7 D015742
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a druhová specificita $7 D013045
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Waldauf, Petr $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 700 1_
- $a Krajčová, Adéla $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 700 1_
- $a Jiroutková, Kateřina $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 700 1_
- $a Halačová, Milada $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic. $7 xx0063011
- 700 1_
- $a Džupa, Valér $u Department of Orthopaedics and Traumatology, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 700 1_
- $a Janoušek, Libor $u Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Pokorná, Eva $u Department of Organ Recovery and Transplantation Databases, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Duška, František $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 10 (2019), s. e0217254
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31584947 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20231108103703 $b ABA008
- 999 __
- $a ok $b bmc $g 1524685 $s 1095883
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 14 $c 10 $d e0217254 $e 20191004 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- GRA __
- $a NV16-28663A $p MZ0
- LZP __
- $a Pubmed-20200511