Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles

T. Urban, P. Waldauf, A. Krajčová, K. Jiroutková, M. Halačová, V. Džupa, L. Janoušek, E. Pokorná, F. Duška,

. 2019 ; 14 (10) : e0217254. [pub] 20191004

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20005827

Grantová podpora
NV16-28663A MZ0 CEP - Centrální evidence projektů

INTRODUCTION: Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS: We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS: We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION: In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005827
003      
CZ-PrNML
005      
20231108103707.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0217254 $2 doi
035    __
$a (PubMed)31584947
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Urban, Tomáš $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
245    10
$a Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles / $c T. Urban, P. Waldauf, A. Krajčová, K. Jiroutková, M. Halačová, V. Džupa, L. Janoušek, E. Pokorná, F. Duška,
520    9_
$a INTRODUCTION: Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS: We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS: We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION: In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.
650    _2
$a senioři $7 D000368
650    _2
$a zvířata $7 D000818
650    _2
$a vztah mezi dávkou a účinkem léčiva $7 D004305
650    _2
$a respirační komplex I $x metabolismus $7 D042967
650    _2
$a respirační komplex IV $x metabolismus $7 D003576
650    _2
$a mastné kyseliny $x metabolismus $7 D005227
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a srdeční mitochondrie $x metabolismus $7 D008929
650    _2
$a svalové mitochondrie $x metabolismus $7 D008931
650    _2
$a oxidace-redukce $x účinky léků $7 D010084
650    _2
$a propofol $x farmakologie $7 D015742
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
650    _2
$a druhová specificita $7 D013045
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Waldauf, Petr $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
700    1_
$a Krajčová, Adéla $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
700    1_
$a Jiroutková, Kateřina $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
700    1_
$a Halačová, Milada $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic. $7 xx0063011
700    1_
$a Džupa, Valér $u Department of Orthopaedics and Traumatology, Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
700    1_
$a Janoušek, Libor $u Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Pokorná, Eva $u Department of Organ Recovery and Transplantation Databases, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Duška, František $u OXYLAB - Mitochondrial Physiology Lab: Charles University, 3rd Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 10 (2019), s. e0217254
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31584947 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20231108103703 $b ABA008
999    __
$a ok $b bmc $g 1524685 $s 1095883
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 10 $d e0217254 $e 20191004 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
GRA    __
$a NV16-28663A $p MZ0
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...