Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity

A. Canela, Y. Maman, SN. Huang, G. Wutz, W. Tang, G. Zagnoli-Vieira, E. Callen, N. Wong, A. Day, JM. Peters, KW. Caldecott, Y. Pommier, A. Nussenzweig,

. 2019 ; 75 (2) : 252-266.e8. [pub] 20190612

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006254
003      
CZ-PrNML
005      
20200521085909.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.molcel.2019.04.030 $2 doi
035    __
$a (PubMed)31202577
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Canela, Andres $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
245    10
$a Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity / $c A. Canela, Y. Maman, SN. Huang, G. Wutz, W. Tang, G. Zagnoli-Vieira, E. Callen, N. Wong, A. Day, JM. Peters, KW. Caldecott, Y. Pommier, A. Nussenzweig,
520    9_
$a Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.
650    _2
$a zlomy chromozomů $7 D019457
650    _2
$a chromozomy $x genetika $7 D002875
650    _2
$a DNA $x chemie $x genetika $7 D004247
650    12
$a dvouřetězcové zlomy DNA $7 D053903
650    _2
$a oprava DNA $x genetika $7 D004260
650    _2
$a DNA-topoisomerasy typu II $x chemie $x genetika $7 D004250
650    _2
$a DNA vazebné proteiny $x chemie $x genetika $7 D004268
650    _2
$a etoposid $x chemie $7 D005047
650    _2
$a genová konverze $x genetika $7 D005785
650    _2
$a HCT116 buňky $7 D045325
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a multiproteinové komplexy $x chemie $x genetika $7 D046912
650    _2
$a proteiny vázající poly-ADP-ribosu $x chemie $x genetika $7 D000075223
650    _2
$a inhibitory topoisomerasy II $x chemie $x farmakologie $7 D059005
650    _2
$a torze mechanická $7 D054159
650    _2
$a genetická transkripce $7 D014158
650    _2
$a translokace genetická $x genetika $7 D014178
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Intramural $7 D052060
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Maman, Yaakov $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
700    1_
$a Huang, Shar-Yin N $u Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA.
700    1_
$a Wutz, Gordana $u Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
700    1_
$a Tang, Wen $u Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
700    1_
$a Zagnoli-Vieira, Guido $u Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
700    1_
$a Callen, Elsa $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
700    1_
$a Wong, Nancy $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
700    1_
$a Day, Amanda $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
700    1_
$a Peters, Jan-Michael $u Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
700    1_
$a Caldecott, Keith W $u Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, 4, Czech Republic.
700    1_
$a Pommier, Yves $u Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA.
700    1_
$a Nussenzweig, André $u Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA. Electronic address: andre_nussenzweig@nih.gov.
773    0_
$w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 75, č. 2 (2019), s. 252-266.e8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31202577 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200521085905 $b ABA008
999    __
$a ok $b bmc $g 1525112 $s 1096310
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 75 $c 2 $d 252-266.e8 $e 20190612 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
LZP    __
$a Pubmed-20200511

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...