• Je něco špatně v tomto záznamu ?

Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants

DA. Korasick, R. Končitíková, M. Kopečná, E. Hájková, A. Vigouroux, S. Moréra, DF. Becker, M. Šebela, JJ. Tanner, D. Kopečný,

. 2019 ; 431 (3) : 576-592. [pub] 20181221

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006677

Grantová podpora
P30 GM124169 NIGMS NIH HHS - United States
R01 GM065546 NIGMS NIH HHS - United States
R01 GM093123 NIGMS NIH HHS - United States
R01 GM105404 NIGMS NIH HHS - United States

Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD+-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate. Sedimentation equilibrium and small-angle X-ray scattering analyses reveal that in solution both plant GSALDHs exist as equilibrium between a domain-swapped dimer and the dimer-of-dimers tetramer. Plant GSALDHs share very low-sequence identity with bacterial, fungal, and animal GSALDHs (classified as ALDH4), which are the closest related ALDH superfamily members. Nevertheless, the crystal structure of ZmALDH12 at 2.2-Å resolution  shows that nearly all key residues involved in the recognition of GSAL are identical to those in ALDH4, indicating a close functional relationship with ALDH4. Phylogenetic analysis suggests that the transition from ALDH4 to ALDH12 occurred during the evolution of the endosymbiotic plant ancestor, prior to the evolution of green algae and land plants. Finally, ALDH12 expression in maize and moss is downregulated in response to salt and drought stresses, possibly to maintain proline levels. Taken together, these results provide molecular insight into the biological roles of the plant ALDH12 family.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006677
003      
CZ-PrNML
005      
20200519204750.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmb.2018.12.010 $2 doi
035    __
$a (PubMed)30580036
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Korasick, David A $u Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
245    10
$a Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants / $c DA. Korasick, R. Končitíková, M. Kopečná, E. Hájková, A. Vigouroux, S. Moréra, DF. Becker, M. Šebela, JJ. Tanner, D. Kopečný,
520    9_
$a Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD+-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate. Sedimentation equilibrium and small-angle X-ray scattering analyses reveal that in solution both plant GSALDHs exist as equilibrium between a domain-swapped dimer and the dimer-of-dimers tetramer. Plant GSALDHs share very low-sequence identity with bacterial, fungal, and animal GSALDHs (classified as ALDH4), which are the closest related ALDH superfamily members. Nevertheless, the crystal structure of ZmALDH12 at 2.2-Å resolution  shows that nearly all key residues involved in the recognition of GSAL are identical to those in ALDH4, indicating a close functional relationship with ALDH4. Phylogenetic analysis suggests that the transition from ALDH4 to ALDH12 occurred during the evolution of the endosymbiotic plant ancestor, prior to the evolution of green algae and land plants. Finally, ALDH12 expression in maize and moss is downregulated in response to salt and drought stresses, possibly to maintain proline levels. Taken together, these results provide molecular insight into the biological roles of the plant ALDH12 family.
650    _2
$a aldehyddehydrogenasa $x chemie $7 D000444
650    _2
$a krystalografie rentgenová $x metody $7 D018360
650    _2
$a fylogeneze $7 D010802
650    _2
$a rostliny $x chemie $7 D010944
650    _2
$a prolin $x chemie $7 D011392
650    _2
$a substrátová specifita $7 D013379
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Končitíková, Radka $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, CZ 78371, Czech Republic.
700    1_
$a Kopečná, Martina $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, CZ 78371, Czech Republic.
700    1_
$a Hájková, Eva $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, CZ 78371, Czech Republic.
700    1_
$a Vigouroux, Armelle $u Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
700    1_
$a Moréra, Solange $u Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
700    1_
$a Becker, Donald F $u Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
700    1_
$a Šebela, Marek $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, CZ 78371, Czech Republic.
700    1_
$a Tanner, John J $u Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA. Electronic address: tannerjj@missouri.edu.
700    1_
$a Kopečný, David $u Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, CZ 78371, Czech Republic. Electronic address: david.kopecny@upol.cz.
773    0_
$w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 431, č. 3 (2019), s. 576-592
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30580036 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200519204746 $b ABA008
999    __
$a ok $b bmc $g 1525535 $s 1096733
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 431 $c 3 $d 576-592 $e 20181221 $i 1089-8638 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
GRA    __
$a P30 GM124169 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM065546 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM093123 $p NIGMS NIH HHS $2 United States
GRA    __
$a R01 GM105404 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace