Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming

M. Drahosova, L. Sekanina, M. Wiglasz,

. 2019 ; 27 (3) : 497-523. [pub] 20180604

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006819

In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time-consuming process as the predictor size depends on a given application, and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006819
003      
CZ-PrNML
005      
20200525131911.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/evco_a_00229 $2 doi
035    __
$a (PubMed)29863421
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Drahosova, Michaela $u Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 612 66 Brno, Czech Republic idrahosova@fit.vutbr.cz.
245    10
$a Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming / $c M. Drahosova, L. Sekanina, M. Wiglasz,
520    9_
$a In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time-consuming process as the predictor size depends on a given application, and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.
650    12
$a algoritmy $7 D000465
650    12
$a biologická evoluce $7 D005075
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a počítačová simulace $7 D003198
650    _2
$a genetická zdatnost $7 D056084
650    _2
$a lidé $7 D006801
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a regresní analýza $7 D012044
650    _2
$a poměr signál - šum $7 D059629
650    12
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
700    1_
$a Sekanina, Lukas $u Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 612 66 Brno, Czech Republic sekanina@fit.vutbr.cz.
700    1_
$a Wiglasz, Michal $u Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 612 66 Brno, Czech Republic iwiglasz@fit.vutbr.cz.
773    0_
$w MED00007225 $t Evolutionary computation $x 1530-9304 $g Roč. 27, č. 3 (2019), s. 497-523
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29863421 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200525131911 $b ABA008
999    __
$a ok $b bmc $g 1525677 $s 1096875
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 27 $c 3 $d 497-523 $e 20180604 $i 1530-9304 $m Evolutionary computation $n Evol Comput $x MED00007225
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...