Detail
Článek
Web zdroj
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A detection of informal abreviations from free text medical notes using deep learning

Lukman Heryawan, Osamu Sugiyama, Goshiro Yamamoto, Purnomo Husnul Khotimah, Luciano H. O. Santos, Kazuya Okamoto, Tomohiro Kuroda

. 2020 ; 16 (1) : 15-23.

Jazyk angličtina Země Česko

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20009493

Background: To parse free text medical notes into structured data such as disease names, drugs, procedures, and other important medical information first, it is necessary to detect medical entities. It is important for an Electronic Medical Record (EMR) to have structured data with semantic interoperability to serve as a seamless communication platform whenever a patient migrates from one physician to another. However, in free text notes, medical entities are often expressed using informal abbreviations. An informal abbreviation is a non-standard or undetermined abbreviation, made in diverse writing styles, which may burden the semantic interoperability between EMR systems. Therefore, a detection of informal abbreviations is required to tackle this issue. Objectives: We attempt to achieve highly reliable detection of informal abbreviations made in diverse writing styles. Methods: In this study, we apply the Long Short-Term Memory (LSTM) model to detect informal abbreviations in free text medical notes. Additionally, we use sliding windows to tackle the limited data issue and sample generator for the imbalance class issue, while introducing additional pre-trained features (bag of words and word2vec vectors) to the model.Results: The LSTM model was able to detect informal abbreviations with precision of 93.6%, recall of 57.6%, and F1-score of 68.9%. Conclusion: Our method was able to recognize informal abbreviations using small data set with high precision. The detection can be used to recognize informal abbreviations in real-time while the physician is typing it and raise appropriate indicators for the informal abbreviation meaning confirmation, thus increase the semantic interoperability.

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc20009493
003      
CZ-PrNML
005      
20221107214653.0
007      
cr|cn|
008      
200624s2020 xr a fs 000 0|eng||
009      
eAR
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Heryawan, Lukman $u Graduate School of Informatics, Kyoto University, Japan
245    12
$a A detection of informal abreviations from free text medical notes using deep learning / $c Lukman Heryawan, Osamu Sugiyama, Goshiro Yamamoto, Purnomo Husnul Khotimah, Luciano H. O. Santos, Kazuya Okamoto, Tomohiro Kuroda
504    __
$a Literatura
520    9_
$a Background: To parse free text medical notes into structured data such as disease names, drugs, procedures, and other important medical information first, it is necessary to detect medical entities. It is important for an Electronic Medical Record (EMR) to have structured data with semantic interoperability to serve as a seamless communication platform whenever a patient migrates from one physician to another. However, in free text notes, medical entities are often expressed using informal abbreviations. An informal abbreviation is a non-standard or undetermined abbreviation, made in diverse writing styles, which may burden the semantic interoperability between EMR systems. Therefore, a detection of informal abbreviations is required to tackle this issue. Objectives: We attempt to achieve highly reliable detection of informal abbreviations made in diverse writing styles. Methods: In this study, we apply the Long Short-Term Memory (LSTM) model to detect informal abbreviations in free text medical notes. Additionally, we use sliding windows to tackle the limited data issue and sample generator for the imbalance class issue, while introducing additional pre-trained features (bag of words and word2vec vectors) to the model.Results: The LSTM model was able to detect informal abbreviations with precision of 93.6%, recall of 57.6%, and F1-score of 68.9%. Conclusion: Our method was able to recognize informal abbreviations using small data set with high precision. The detection can be used to recognize informal abbreviations in real-time while the physician is typing it and raise appropriate indicators for the informal abbreviation meaning confirmation, thus increase the semantic interoperability.
650    17
$a zkratky jako téma $7 D000004 $2 czmesh
650    17
$a deep learning $7 D000077321 $2 czmesh
650    _7
$a automatizované zpracování dat $x metody $7 D001330 $2 czmesh
650    _7
$a elektronické zdravotní záznamy $7 D057286 $2 czmesh
650    _7
$a správnost dat $7 D000068598 $2 czmesh
650    _7
$a data management $x metody $x statistika a číselné údaje $7 D000079803 $2 czmesh
650    _7
$a interoperabilita zdravotnických informací $7 D000073892 $2 czmesh
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
700    1_
$a Sugiyama, Osamu $u Graduate School of Medicine, Kyoto University, Japan
700    1_
$a Yamamoto, Goshiro $u Kyoto University Hospital, Japan
700    1_
$a Khotimah, Purnomo Husnul $u Research Center for Informatics, Indonesian Institute of Sciences, Indonesia
700    1_
$a Santos, Luciano H. O. $u Graduate School of Informatics, Kyoto University, Japan; Graduate School of Medicine, Kyoto University, Japan; Kyoto University Hospital, Japan
700    1_
$a Okamoto, Kazuya $u Graduate School of Informatics, Kyoto University, Japan; Graduate School of Medicine, Kyoto University, Japan; Kyoto University Hospital, Japan
700    1_
$a Kuroda, Tomohiro $u Graduate School of Informatics, Kyoto University, Japan; Graduate School of Medicine, Kyoto University, Japan; Kyoto University Hospital, Japan
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 16, č. 1 (2020), s. 15-23 $w MED00173462
856    41
$u https://www.ejbi.org/scholarly-articles/a-detection-of-informal-abbreviations-from-free-text-medical-notes-using-deep-learning.pdf $y plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20140801191602 $b ABA008
991    __
$a 20221107214650 $b ABA008
999    __
$a ok $b bmc $g 1537820 $s 1099577
BAS    __
$a 3 $a 4
BMC    __
$a 2020 $b 16 $c 1 $d 15-23 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK189 $d 20221107 $a NLK 2020-20/dk

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...