• Je něco špatně v tomto záznamu ?

Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation

O. Skořepa, S. Pazicky, B. Kalousková, J. Bláha, C. Abreu, T. Ječmen, M. Rosůlek, A. Fish, A. Sedivy, K. Harlos, J. Dohnálek, T. Skálová, O. Vaněk,

. 2020 ; 12 (7) : . [pub] 20200721

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20021946

Grantová podpora
18-10687S Grantová Agentura České Republiky
LTC17065 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001776 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109 European Regional Development Fund
927916 Grantová Agentura, Univerzita Karlova
SVV 260427/2020 Univerzita Karlova v Praze
LM2015043 Ministerstvo Školství, Mládeže a Tělovýchovy
203141/Z/16/Z Wellcome Trust - United Kingdom
CA15126 European Cooperation in Science and Technology

NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20021946
003      
CZ-PrNML
005      
20201204093428.0
007      
ta
008      
201125s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/cancers12071998 $2 doi
035    __
$a (PubMed)32708305
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Skořepa, Ondřej $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
245    10
$a Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation / $c O. Skořepa, S. Pazicky, B. Kalousková, J. Bláha, C. Abreu, T. Ječmen, M. Rosůlek, A. Fish, A. Sedivy, K. Harlos, J. Dohnálek, T. Skálová, O. Vaněk,
520    9_
$a NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pazicky, Samuel $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
700    1_
$a Kalousková, Barbora $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
700    1_
$a Bláha, Jan $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
700    1_
$a Abreu, Celeste $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
700    1_
$a Ječmen, Tomáš $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
700    1_
$a Rosůlek, Michal $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic. BIOCEV, Institute of Microbiology, The Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic.
700    1_
$a Fish, Alexander $u Department of Biochemistry, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
700    1_
$a Sedivy, Arthur $u Protein Technologies, Vienna Biocenter Core Facilities GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
700    1_
$a Harlos, Karl $u Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
700    1_
$a Dohnálek, Jan $u BIOCEV, Institute of Biotechnology, The Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic.
700    1_
$a Skálová, Tereza $u BIOCEV, Institute of Biotechnology, The Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic.
700    1_
$a Vaněk, Ondřej $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic.
773    0_
$w MED00173178 $t Cancers $x 2072-6694 $g Roč. 12, č. 7 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32708305 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201204093426 $b ABA008
999    __
$a ind $b bmc $g 1591654 $s 1112618
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 12 $c 7 $e 20200721 $i 2072-6694 $m Cancers $n Cancers $x MED00173178
GRA    __
$a 18-10687S $p Grantová Agentura České Republiky
GRA    __
$a LTC17065 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CZ.02.1.01/0.0/0.0/16_013/0001776 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CZ.1.05/1.1.00/02.0109 $p European Regional Development Fund
GRA    __
$a 927916 $p Grantová Agentura, Univerzita Karlova
GRA    __
$a SVV 260427/2020 $p Univerzita Karlova v Praze
GRA    __
$a LM2015043 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 203141/Z/16/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$a CA15126 $p European Cooperation in Science and Technology
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...