-
Je něco špatně v tomto záznamu ?
Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells
M. Bajzikova, J. Kovarova, AR. Coelho, S. Boukalova, S. Oh, K. Rohlenova, D. Svec, S. Hubackova, B. Endaya, K. Judasova, A. Bezawork-Geleta, K. Kluckova, L. Chatre, R. Zobalova, A. Novakova, K. Vanova, Z. Ezrova, GJ. Maghzal, S. Magalhaes Novais,...
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Z99 HD999999
Intramural NIH HHS - United States
NV16-31604A
MZ0
CEP - Centrální evidence projektů
NV16-31604A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Plný text - Článek
NLK
Cell Press Free Archives
od 2005-01-01 do Před 1 rokem
Free Medical Journals
od 2005 do Před 1 rokem
- MeSH
- buněčné dýchání MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory metabolismus MeSH
- oxidativní fosforylace MeSH
- oxidoreduktasy působící na CH-CH vazby fyziologie MeSH
- pyrimidiny metabolismus MeSH
- ubichinon metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.
3rd Faculty Hospital Charles University Prague Czech Republic
CNRS UMR 3738 Team Stability of Nuclear and Mitochondrial DNA 75015 Paris France
College of Pharmacy Natural Product Research Institute Seoul National University Seoul 08826 Korea
Department of Developmental and Stem Cell Biology Institut Pasteur 75015 Paris France
Faculty of Science Charles University 128 44 Prague Czech Republic
Institute for Glycomics Griffith University Southport 4222 QLD Australia
Institute of Biotechnology Czech Academy of Sciences 252 50 Vestec Prague West Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences 142 20 Prague Czech Republic
Malaghan Institute of Medical Research Wellington 6242 New Zealand
School of Medical Science Griffith University Southport QLD 4222 Australia
St Vincent's Clinical School UNSW Medicine University of New South Wales Sydney NSW 2052 Australia
Victor Chang Cardiac Research Institute Darlinghurst NSW 2010 Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022892
- 003
- CZ-PrNML
- 005
- 20231121140636.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmet.2018.10.014 $2 doi
- 035 __
- $a (PubMed)30449682
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bajzikova, Martina $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 245 10
- $a Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells / $c M. Bajzikova, J. Kovarova, AR. Coelho, S. Boukalova, S. Oh, K. Rohlenova, D. Svec, S. Hubackova, B. Endaya, K. Judasova, A. Bezawork-Geleta, K. Kluckova, L. Chatre, R. Zobalova, A. Novakova, K. Vanova, Z. Ezrova, GJ. Maghzal, S. Magalhaes Novais, M. Olsinova, L. Krobova, YJ. An, E. Davidova, Z. Nahacka, M. Sobol, T. Cunha-Oliveira, C. Sandoval-Acuña, H. Strnad, T. Zhang, T. Huynh, TL. Serafim, P. Hozak, VA. Sardao, WJH. Koopman, M. Ricchetti, PJ. Oliveira, F. Kolar, M. Kubista, J. Truksa, K. Dvorakova-Hortova, K. Pacak, R. Gurlich, R. Stocker, Y. Zhou, MV. Berridge, S. Park, L. Dong, J. Rohlena, J. Neuzil,
- 520 9_
- $a Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buněčné dýchání $7 D019069
- 650 _2
- $a mitochondriální DNA $x metabolismus $7 D004272
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední BALB C $7 D008807
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a nádory $x metabolismus $7 D009369
- 650 _2
- $a oxidativní fosforylace $7 D010085
- 650 _2
- $a oxidoreduktasy působící na CH-CH vazby $x fyziologie $7 D044925
- 650 _2
- $a pyrimidiny $x metabolismus $7 D011743
- 650 _2
- $a ubichinon $x metabolismus $7 D014451
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Intramural $7 D052060
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kovarova, Jaromira $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic. Electronic address: jaromira.kovarova@ibt.cas.cz.
- 700 1_
- $a Coelho, Ana R $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
- 700 1_
- $a Boukalova, Stepana $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Oh, Sehyun $u College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.
- 700 1_
- $a Rohlenova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Svec, David $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Hubackova, Sona $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Endaya, Berwini $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Judasova, Kristyna $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Bezawork-Geleta, Ayenachew $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
- 700 1_
- $a Kluckova, Katarina $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Chatre, Laurent $u Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France.
- 700 1_
- $a Zobalová, Renata $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic. $7 xx0310352
- 700 1_
- $a Novakova, Anna $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Vanova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Ezrova, Zuzana $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 700 1_
- $a Maghzal, Ghassan J $u Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
- 700 1_
- $a Magalhaes Novais, Silvia $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 700 1_
- $a Olsinova, Marie $u Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 700 1_
- $a Krobova, Linda $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a An, Yong Jin $u College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.
- 700 1_
- $a Davidova, Eliska $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 700 1_
- $a Nahacka, Zuzana $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Sobol, Margarita $u Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
- 700 1_
- $a Cunha-Oliveira, Teresa $u CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
- 700 1_
- $a Sandoval-Acuña, Cristian $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Strnad, Hynek $u Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
- 700 1_
- $a Zhang, Tongchuan $u Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia.
- 700 1_
- $a Huynh, Thanh $u Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- 700 1_
- $a Serafim, Teresa L $u CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
- 700 1_
- $a Hozak, Pavel $u Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
- 700 1_
- $a Sardao, Vilma A $u CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
- 700 1_
- $a Koopman, Werner J H $u Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 Nijmegen, the Netherlands.
- 700 1_
- $a Ricchetti, Miria $u Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France.
- 700 1_
- $a Oliveira, Paulo J $u CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
- 700 1_
- $a Kolar, Frantisek $u Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic.
- 700 1_
- $a Kubista, Mikael $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Truksa, Jaroslav $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
- 700 1_
- $a Dvorakova-Hortova, Katerina $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic.
- 700 1_
- $a Pacak, Karel $u Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- 700 1_
- $a Gurlich, Robert $u Third Faculty Hospital, Charles University, Prague, Czech Republic.
- 700 1_
- $a Stocker, Roland $u Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
- 700 1_
- $a Zhou, Yaoqi $u Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia.
- 700 1_
- $a Berridge, Michael V $u Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
- 700 1_
- $a Park, Sunghyouk $u College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea. Electronic address: psh@snu.ac.kr.
- 700 1_
- $a Dong, Lanfeng $u School of Medical Science, Griffith University, Southport, QLD 4222, Australia. Electronic address: l.dong@griffith.edu.au.
- 700 1_
- $a Rohlena, Jakub $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic. Electronic address: rohlenaj@ibt.cas.cz.
- 700 1_
- $a Neuzil, Jiri $u Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, QLD 4222, Australia. Electronic address: j.neuzil@griffith.edu.au.
- 773 0_
- $w MED00008684 $t Cell metabolism $x 1932-7420 $g Roč. 29, č. 2 (2019), s. 399-416.e10
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30449682 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20231121140633 $b ABA008
- 999 __
- $a ok $b bmc $g 1595211 $s 1113568
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 29 $c 2 $d 399-416.e10 $e 20181115 $i 1932-7420 $m Cell metabolism $n Cell Metab $x MED00008684
- GRA __
- $a Z99 HD999999 $p Intramural NIH HHS $2 United States
- GRA __
- $a NV17-30138A $p MZ0 $a NV16-31604A $p MZ0
- GRA __
- $a NV17-30138A $p MZ0 $a NV16-31604A $p MZ0
- LZP __
- $a Pubmed-20201125