Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Gaussian Process Surrogate Models for the CMA Evolution Strategy

L. Bajer, Z. Pitra, J. Repický, M. Holeňa,

. 2019 ; 27 (4) : 665-697. [pub] 20181212

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022934

This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)-several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the article thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25-100 function evaluations per dimension, in 10- and less-dimensional spaces even for 25-250 evaluations per dimension.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022934
003      
CZ-PrNML
005      
20201214125008.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/evco_a_00244 $2 doi
035    __
$a (PubMed)30540493
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bajer, Lukáš $u Faculty of Mathematics and Physics, Charles University in Prague, Malostran. nám. 25, 118 00 Prague, Czech Republic bajeluk@gmail.com.
245    10
$a Gaussian Process Surrogate Models for the CMA Evolution Strategy / $c L. Bajer, Z. Pitra, J. Repický, M. Holeňa,
520    9_
$a This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)-several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the article thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25-100 function evaluations per dimension, in 10- and less-dimensional spaces even for 25-250 evaluations per dimension.
650    12
$a algoritmy $7 D000465
650    12
$a biologická evoluce $7 D005075
650    _2
$a počítačová simulace $7 D003198
650    _2
$a normální rozdělení $7 D016011
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pitra, Zbyněk $u Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Břehová 7, 115 19 Prague, Czech Republic z.pitra@gmail.com.
700    1_
$a Repický, Jakub $u Faculty of Mathematics and Physics, Charles University in Prague, Malostran. nám. 25, 118 00 Prague, Czech Republic repicky@cs.cas.cz.
700    1_
$a Holeňa, Martin $u Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic martin@cs.cas.cz.
773    0_
$w MED00007225 $t Evolutionary computation $x 1530-9304 $g Roč. 27, č. 4 (2019), s. 665-697
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30540493 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125008 $b ABA008
999    __
$a ok $b bmc $g 1595253 $s 1113610
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 27 $c 4 $d 665-697 $e 20181212 $i 1530-9304 $m Evolutionary computation $n Evol Comput $x MED00007225
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...