-
Je něco špatně v tomto záznamu ?
Gaussian Process Surrogate Models for the CMA Evolution Strategy
L. Bajer, Z. Pitra, J. Repický, M. Holeňa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
30540493
DOI
10.1162/evco_a_00244
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- biologická evoluce * MeSH
- normální rozdělení MeSH
- počítačová simulace MeSH
- Publikační typ
- časopisecké články MeSH
This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)-several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the article thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25-100 function evaluations per dimension, in 10- and less-dimensional spaces even for 25-250 evaluations per dimension.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022934
- 003
- CZ-PrNML
- 005
- 20201214125008.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1162/evco_a_00244 $2 doi
- 035 __
- $a (PubMed)30540493
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bajer, Lukáš $u Faculty of Mathematics and Physics, Charles University in Prague, Malostran. nám. 25, 118 00 Prague, Czech Republic bajeluk@gmail.com.
- 245 10
- $a Gaussian Process Surrogate Models for the CMA Evolution Strategy / $c L. Bajer, Z. Pitra, J. Repický, M. Holeňa,
- 520 9_
- $a This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)-several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the article thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25-100 function evaluations per dimension, in 10- and less-dimensional spaces even for 25-250 evaluations per dimension.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a biologická evoluce $7 D005075
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a normální rozdělení $7 D016011
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pitra, Zbyněk $u Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Břehová 7, 115 19 Prague, Czech Republic z.pitra@gmail.com.
- 700 1_
- $a Repický, Jakub $u Faculty of Mathematics and Physics, Charles University in Prague, Malostran. nám. 25, 118 00 Prague, Czech Republic repicky@cs.cas.cz.
- 700 1_
- $a Holeňa, Martin $u Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic martin@cs.cas.cz.
- 773 0_
- $w MED00007225 $t Evolutionary computation $x 1530-9304 $g Roč. 27, č. 4 (2019), s. 665-697
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30540493 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125008 $b ABA008
- 999 __
- $a ok $b bmc $g 1595253 $s 1113610
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 27 $c 4 $d 665-697 $e 20181212 $i 1530-9304 $m Evolutionary computation $n Evol Comput $x MED00007225
- LZP __
- $a Pubmed-20201125