Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study

F. Duša, W. Chen, J. Witos, AH. Rantamäki, AWT. King, E. Sklavounos, M. Roth, SK. Wiedmer,

. 2020 ; 1862 (2) : 183115. [pub] 20191105

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023186

The cell membrane is mainly composed of lipid bilayers with inserted proteins and carbohydrates. Lipid bilayers made of purified or synthetic lipids are widely used for estimating the effect of target compounds on cell membranes. However, the composition of such biomimetic membranes is much simpler than the composition of biological membranes. Interactions between compounds and simple composition biomimetic membranes might not demonstrate the effect of target compounds as precisely as membranes with compositions close to real organisms. Therefore, the aim of our study is to construct biomimetic membrane closely mimicking the state of natural membranes. Liposomes were prepared from lipids extracted from L-α-phosphatidylcholine, Escherichia coli, yeast (Saccharomyces cerevisiae) and bovine liver cells through agitation and sonication. They were immobilized onto silicon dioxide (SiO2) sensor surfaces using N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer with calcium chloride. The biomimetic membranes were successfully immobilized onto the SiO2 sensor surface and detected by nanoplasmonic sensing. The immobilized membranes were exposed to choline carboxylates. The membrane disruption effect was, as expected, more pronounced with increasing carbohydrate chain length of the carboxylates. The results correlated with the toxicity values determined using Vibrio fischeri bacteria. The yeast extracted lipid membranes had the strongest response to introduction of choline laurate while the bovine liver lipid extracted liposomes were the most sensitive towards the shorter choline carboxylates. This implies that the composition of the cell membrane plays a crucial role upon interaction with choline carboxylates, and underlines the necessity of testing membrane systems of different origin to obtain an overall image of such interactions.

000      
00000naa a2200000 a 4500
001      
bmc20023186
003      
CZ-PrNML
005      
20201214125438.0
007      
ta
008      
201125s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbamem.2019.183115 $2 doi
035    __
$a (PubMed)31704086
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Duša, Filip $u Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00 Brno, Czech Republic.
245    10
$a Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study / $c F. Duša, W. Chen, J. Witos, AH. Rantamäki, AWT. King, E. Sklavounos, M. Roth, SK. Wiedmer,
520    9_
$a The cell membrane is mainly composed of lipid bilayers with inserted proteins and carbohydrates. Lipid bilayers made of purified or synthetic lipids are widely used for estimating the effect of target compounds on cell membranes. However, the composition of such biomimetic membranes is much simpler than the composition of biological membranes. Interactions between compounds and simple composition biomimetic membranes might not demonstrate the effect of target compounds as precisely as membranes with compositions close to real organisms. Therefore, the aim of our study is to construct biomimetic membrane closely mimicking the state of natural membranes. Liposomes were prepared from lipids extracted from L-α-phosphatidylcholine, Escherichia coli, yeast (Saccharomyces cerevisiae) and bovine liver cells through agitation and sonication. They were immobilized onto silicon dioxide (SiO2) sensor surfaces using N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer with calcium chloride. The biomimetic membranes were successfully immobilized onto the SiO2 sensor surface and detected by nanoplasmonic sensing. The immobilized membranes were exposed to choline carboxylates. The membrane disruption effect was, as expected, more pronounced with increasing carbohydrate chain length of the carboxylates. The results correlated with the toxicity values determined using Vibrio fischeri bacteria. The yeast extracted lipid membranes had the strongest response to introduction of choline laurate while the bovine liver lipid extracted liposomes were the most sensitive towards the shorter choline carboxylates. This implies that the composition of the cell membrane plays a crucial role upon interaction with choline carboxylates, and underlines the necessity of testing membrane systems of different origin to obtain an overall image of such interactions.
650    _2
$a zvířata $7 D000818
650    _2
$a biomimetické materiály $x chemie $7 D040761
650    _2
$a skot $7 D002417
650    _2
$a buněčná membrána $x chemie $7 D002462
650    _2
$a cholin $x analogy a deriváty $7 D002794
650    _2
$a liposomy $x chemie $7 D008081
650    _2
$a membránové lipidy $x chemie $7 D008563
650    _2
$a Saccharomyces cerevisiae $7 D012441
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chen, Wen $u Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
700    1_
$a Witos, Joanna $u Department of Bioproducts and Biosystems, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland.
700    1_
$a Rantamäki, Antti H $u Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
700    1_
$a King, Alistair W T $u Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland.
700    1_
$a Sklavounos, Evangelos $u Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland; Neste Engineering Solutions Oy, P.O. Box 310, FI-06101 Porvoo, Finland.
700    1_
$a Roth, Michal $u Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00 Brno, Czech Republic.
700    1_
$a Wiedmer, Susanne K $u Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P.O. Box 55, FI-00014, Finland. Electronic address: susanne.wiedmer@helsinki.fi.
773    0_
$w MED00000713 $t Biochimica et biophysica acta. Biomembranes $x 1879-2642 $g Roč. 1862, č. 2 (2020), s. 183115
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31704086 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125437 $b ABA008
999    __
$a ok $b bmc $g 1595505 $s 1113862
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 1862 $c 2 $d 183115 $e 20191105 $i 1879-2642 $m Biochimica et biophysica acta. Biomembranes $n Biochem Biophys Acta $x MED00000713
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...