-
Je něco špatně v tomto záznamu ?
Effects of primary amine-based coatings on microglia internalization of nanogels
E. Mauri, P. Veglianese, S. Papa, A. Rossetti, M. De Paola, A. Mariani, Z. Posel, P. Posocco, A. Sacchetti, F. Rossi,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- aminy farmakologie MeSH
- biokompatibilní potahované materiály farmakologie MeSH
- dynamický rozptyl světla MeSH
- endocytóza účinky léků MeSH
- fluorescence MeSH
- mikroglie cytologie účinky léků MeSH
- molekulární modely MeSH
- myši inbrední C57BL MeSH
- nanogely chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nanogels represent a pivotal class of biomaterials in the therapeutic intracellular treatment of many diseases, especially those involving the central nervous system (CNS). Their biocompatibility and synergy with the biological environment encourage their cellular uptake, releasing the curative cargo in the desired area. As a main drawback, microglia are generally able to phagocytize any foreign element overcoming the blood brain barrier (BBB), including these materials, drastically limiting their bioavailability for the target cells. In this work, we investigated the opportunity to tune and therefore reduce nanogel internalization in microglia cultures, exploiting the orthogonal chemical functionalization with primary amine groups, as a surface coating strategy. Nanogels are designed by following two methods: the direct grafting of aliphatic primary amines and the linkage of -NH2 modified PEG on the nanogel surface. The latter synthesis was proposed to evaluate the combination of PEGylation with the basic nitrogen atom. The achieved results indicate the possibility of effectively modulating the uptake of nanogels, in particular limiting their internalization using the PEG-NH2 coating. This outcome could be considered a promising strategy for the development of carriers for drugs or gene delivery that could overcome microglia scavenging.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023276
- 003
- CZ-PrNML
- 005
- 20201214125632.0
- 007
- ta
- 008
- 201125s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.colsurfb.2019.110574 $2 doi
- 035 __
- $a (PubMed)31704605
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Mauri, Emanuele $u Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy.
- 245 10
- $a Effects of primary amine-based coatings on microglia internalization of nanogels / $c E. Mauri, P. Veglianese, S. Papa, A. Rossetti, M. De Paola, A. Mariani, Z. Posel, P. Posocco, A. Sacchetti, F. Rossi,
- 520 9_
- $a Nanogels represent a pivotal class of biomaterials in the therapeutic intracellular treatment of many diseases, especially those involving the central nervous system (CNS). Their biocompatibility and synergy with the biological environment encourage their cellular uptake, releasing the curative cargo in the desired area. As a main drawback, microglia are generally able to phagocytize any foreign element overcoming the blood brain barrier (BBB), including these materials, drastically limiting their bioavailability for the target cells. In this work, we investigated the opportunity to tune and therefore reduce nanogel internalization in microglia cultures, exploiting the orthogonal chemical functionalization with primary amine groups, as a surface coating strategy. Nanogels are designed by following two methods: the direct grafting of aliphatic primary amines and the linkage of -NH2 modified PEG on the nanogel surface. The latter synthesis was proposed to evaluate the combination of PEGylation with the basic nitrogen atom. The achieved results indicate the possibility of effectively modulating the uptake of nanogels, in particular limiting their internalization using the PEG-NH2 coating. This outcome could be considered a promising strategy for the development of carriers for drugs or gene delivery that could overcome microglia scavenging.
- 650 _2
- $a aminy $x farmakologie $7 D000588
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a biokompatibilní potahované materiály $x farmakologie $7 D020099
- 650 _2
- $a dynamický rozptyl světla $7 D000067493
- 650 _2
- $a endocytóza $x účinky léků $7 D004705
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a mikroglie $x cytologie $x účinky léků $7 D017628
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a nanogely $x chemie $7 D000080385
- 650 _2
- $a velikost částic $7 D010316
- 650 _2
- $a protonová magnetická rezonanční spektroskopie $7 D066244
- 650 _2
- $a spektroskopie infračervená s Fourierovou transformací $7 D017550
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Veglianese, Pietro $u Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milan, Italy.
- 700 1_
- $a Papa, Simonetta $u Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milan, Italy.
- 700 1_
- $a Rossetti, Arianna $u Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy.
- 700 1_
- $a De Paola, Massimiliano $u Department of Environmental Health Sciences, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milan, Italy.
- 700 1_
- $a Mariani, Alessandro $u Department of Environmental Health Sciences, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milan, Italy.
- 700 1_
- $a Posel, Zbyšek $u Department of Informatics, Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czech Republic; Department of Engineering and Architecture, University of Trieste, via Valerio 17, 34127, Trieste, Italy.
- 700 1_
- $a Posocco, Paola $u Department of Engineering and Architecture, University of Trieste, via Valerio 17, 34127, Trieste, Italy.
- 700 1_
- $a Sacchetti, Alessandro $u Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy. Electronic address: alessandro.sacchetti@polimi.it.
- 700 1_
- $a Rossi, Filippo $u Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy. Electronic address: filippo.rossi@polimi.it.
- 773 0_
- $w MED00180202 $t Colloids and surfaces. B, Biointerfaces $x 1873-4367 $g Roč. 185, č. - (2020), s. 110574
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31704605 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125631 $b ABA008
- 999 __
- $a ok $b bmc $g 1595595 $s 1113952
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 185 $c - $d 110574 $e 20191017 $i 1873-4367 $m Colloids and surfaces. B, Biointerfaces $n Colloids surf., B Biointerfaces $x MED00180202
- LZP __
- $a Pubmed-20201125