-
Je něco špatně v tomto záznamu ?
Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa
M. Vesteg, L. Hadariová, A. Horváth, CE. Estraño, SD. Schwartzbach, J. Krajčovič,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31095885
DOI
10.1111/brv.12523
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- DNA řízené RNA-polymerasy genetika metabolismus MeSH
- Euglenida klasifikace genetika MeSH
- Euglenozoa klasifikace genetika MeSH
- fototrofní procesy MeSH
- fylogeneze MeSH
- genom fyziologie MeSH
- introny fyziologie MeSH
- mitochondrie genetika MeSH
- molekulární biologie * MeSH
- RNA interference MeSH
- RNA ribozomální 28S genetika MeSH
- Trypanosomatina klasifikace enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023607
- 003
- CZ-PrNML
- 005
- 20201214130550.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/brv.12523 $2 doi
- 035 __
- $a (PubMed)31095885
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vesteg, Matej $u Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia.
- 245 10
- $a Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa / $c M. Vesteg, L. Hadariová, A. Horváth, CE. Estraño, SD. Schwartzbach, J. Krajčovič,
- 520 9_
- $a Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
- 650 12
- $a biologická evoluce $7 D005075
- 650 _2
- $a DNA řízené RNA-polymerasy $x genetika $x metabolismus $7 D012321
- 650 _2
- $a Euglenida $x klasifikace $x genetika $7 D016822
- 650 _2
- $a Euglenozoa $x klasifikace $x genetika $7 D056898
- 650 _2
- $a genom $x fyziologie $7 D016678
- 650 _2
- $a introny $x fyziologie $7 D007438
- 650 _2
- $a mitochondrie $x genetika $7 D008928
- 650 12
- $a molekulární biologie $7 D008967
- 650 _2
- $a fototrofní procesy $7 D052817
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a RNA interference $7 D034622
- 650 _2
- $a RNA ribozomální 28S $x genetika $7 D012339
- 650 _2
- $a Trypanosomatina $x klasifikace $x enzymologie $x genetika $7 D014351
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Hadariová, Lucia $u Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic. Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic.
- 700 1_
- $a Horváth, Anton $u Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia.
- 700 1_
- $a Estraño, Carlos E $u Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA.
- 700 1_
- $a Schwartzbach, Steven D $u Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA.
- 700 1_
- $a Krajčovič, Juraj $u Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia.
- 773 0_
- $w MED00009331 $t Biological reviews of the Cambridge Philosophical Society $x 1469-185X $g Roč. 94, č. 5 (2019), s. 1701-1721
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31095885 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214130549 $b ABA008
- 999 __
- $a ok $b bmc $g 1595926 $s 1114283
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 94 $c 5 $d 1701-1721 $e 20190516 $i 1469-185X $m Biological reviews $n Biol Rev Camb Philos Soc $x MED00009331
- LZP __
- $a Pubmed-20201125