• Je něco špatně v tomto záznamu ?

Multi-feature localization of epileptic foci from interictal, intracranial EEG

J. Cimbalnik, P. Klimes, V. Sladky, P. Nejedly, P. Jurak, M. Pail, R. Roman, P. Daniel, H. Guragain, B. Brinkmann, M. Brazdil, G. Worrell,

. 2019 ; 130 (10) : 1945-1953. [pub] 20190805

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023611

Grantová podpora
R01 NS063039 NINDS NIH HHS - United States
R01 NS078136 NINDS NIH HHS - United States

OBJECTIVE: When considering all patients with focal drug-resistant epilepsy, as high as 40-50% of patients suffer seizure recurrence after surgery. To achieve seizure freedom without side effects, accurate localization of the epileptogenic tissue is crucial before its resection. We investigate an automated, fast, objective mapping process that uses only interictal data. METHODS: We propose a novel approach based on multiple iEEG features, which are used to train a support vector machine (SVM) model for classification of iEEG electrodes as normal or pathologic using 30 min of inter-ictal recording. RESULTS: The tissue under the iEEG electrodes, classified as epileptogenic, was removed in 17/18 excellent outcome patients and was not entirely resected in 8/10 poor outcome patients. The overall best result was achieved in a subset of 9 excellent outcome patients with the area under the receiver operating curve = 0.95. CONCLUSION: SVM models combining multiple iEEG features show better performance than algorithms using a single iEEG marker. Multiple iEEG and connectivity features in presurgical evaluation could improve epileptogenic tissue localization, which may improve surgical outcome and minimize risk of side effects. SIGNIFICANCE: In this study, promising results were achieved in localization of epileptogenic regions by SVM models that combine multiple features from 30 min of inter-ictal iEEG recordings.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023611
003      
CZ-PrNML
005      
20210924104336.0
007      
ta
008      
201125s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.clinph.2019.07.024 $2 doi
035    __
$a (PubMed)31465970
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Cimbalnik, Jan $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Electronic address: jan.cimbalnik@fnusa.cz.
245    10
$a Multi-feature localization of epileptic foci from interictal, intracranial EEG / $c J. Cimbalnik, P. Klimes, V. Sladky, P. Nejedly, P. Jurak, M. Pail, R. Roman, P. Daniel, H. Guragain, B. Brinkmann, M. Brazdil, G. Worrell,
520    9_
$a OBJECTIVE: When considering all patients with focal drug-resistant epilepsy, as high as 40-50% of patients suffer seizure recurrence after surgery. To achieve seizure freedom without side effects, accurate localization of the epileptogenic tissue is crucial before its resection. We investigate an automated, fast, objective mapping process that uses only interictal data. METHODS: We propose a novel approach based on multiple iEEG features, which are used to train a support vector machine (SVM) model for classification of iEEG electrodes as normal or pathologic using 30 min of inter-ictal recording. RESULTS: The tissue under the iEEG electrodes, classified as epileptogenic, was removed in 17/18 excellent outcome patients and was not entirely resected in 8/10 poor outcome patients. The overall best result was achieved in a subset of 9 excellent outcome patients with the area under the receiver operating curve = 0.95. CONCLUSION: SVM models combining multiple iEEG features show better performance than algorithms using a single iEEG marker. Multiple iEEG and connectivity features in presurgical evaluation could improve epileptogenic tissue localization, which may improve surgical outcome and minimize risk of side effects. SIGNIFICANCE: In this study, promising results were achieved in localization of epileptogenic regions by SVM models that combine multiple features from 30 min of inter-ictal iEEG recordings.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a implantované elektrody $7 D004567
650    _2
$a elektroencefalografie $x přístrojové vybavení $x metody $7 D004569
650    _2
$a epilepsie parciální $x diagnóza $x patofyziologie $7 D004828
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Klimes, Petr $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Sladky, Vladimir $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
700    1_
$a Nejedly, Petr $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Jurak, Pavel $u Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Pail, Martin $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic. $7 xx0264305
700    1_
$a Roman, Robert $u Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Daniel, Pavel $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Guragain, Hari $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
700    1_
$a Brinkmann, Benjamin $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
700    1_
$a Brazdil, Milan $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Worrell, Greg $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
773    0_
$w MED00005214 $t Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology $x 1872-8952 $g Roč. 130, č. 10 (2019), s. 1945-1953
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31465970 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20210924104334 $b ABA008
999    __
$a ok $b bmc $g 1595930 $s 1114287
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 130 $c 10 $d 1945-1953 $e 20190805 $i 1872-8952 $m Clinical neurophysiology $n Clin Neurophysiol $x MED00005214
GRA    __
$a R01 NS063039 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS078136 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...