-
Je něco špatně v tomto záznamu ?
STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations
M. Stift, F. Kolář, PG. Meirmans,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2011
PubMed Central
od 2011 do Před 1 rokem
Europe PubMed Central
od 2011 do Před 1 rokem
ProQuest Central
od 2000-01-01 do Před 1 rokem
Open Access Digital Library
od 1947-01-01
Health & Medicine (ProQuest)
od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest)
od 2000-01-01 do Před 1 rokem
- MeSH
- diploidie MeSH
- genetická variace genetika MeSH
- genetické markery genetika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus genetika MeSH
- mikrosatelitní repetice genetika MeSH
- ploidie * MeSH
- populační genetika statistika a číselné údaje MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analysis of population genetic structure has become a standard approach in population genetics. In polyploid complexes, clustering analyses can elucidate the origin of polyploid populations and patterns of admixture between different cytotypes. However, combining diploid and polyploid data can theoretically lead to biased inference with (artefactual) clustering by ploidy. We used simulated mixed-ploidy (diploid-autotetraploid) data to systematically compare the performance of k-means clustering and the model-based clustering methods implemented in STRUCTURE, ADMIXTURE, FASTSTRUCTURE and INSTRUCT under different scenarios of differentiation and with different marker types. Under scenarios of strong population differentiation, the tested applications performed equally well. However, when population differentiation was weak, STRUCTURE was the only method that allowed unbiased inference with markers with limited genotypic information (co-dominant markers with unknown dosage or dominant markers). Still, since STRUCTURE was comparatively slow, the much faster but less powerful FASTSTRUCTURE provides a reasonable alternative for large datasets. Finally, although bias makes k-means clustering unsuitable for markers with incomplete genotype information, for large numbers of loci (>1000) with known dosage k-means clustering was superior to FASTSTRUCTURE in terms of power and speed. We conclude that STRUCTURE is the most robust method for the analysis of genetic structure in mixed-ploidy populations, although alternative methods should be considered under some specific conditions.
Ecology Department of Biology University of Konstanz Konstanz Germany
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023629
- 003
- CZ-PrNML
- 005
- 20201214130644.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41437-019-0247-6 $2 doi
- 035 __
- $a (PubMed)31285566
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Stift, Marc $u Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.
- 245 10
- $a STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations / $c M. Stift, F. Kolář, PG. Meirmans,
- 520 9_
- $a Analysis of population genetic structure has become a standard approach in population genetics. In polyploid complexes, clustering analyses can elucidate the origin of polyploid populations and patterns of admixture between different cytotypes. However, combining diploid and polyploid data can theoretically lead to biased inference with (artefactual) clustering by ploidy. We used simulated mixed-ploidy (diploid-autotetraploid) data to systematically compare the performance of k-means clustering and the model-based clustering methods implemented in STRUCTURE, ADMIXTURE, FASTSTRUCTURE and INSTRUCT under different scenarios of differentiation and with different marker types. Under scenarios of strong population differentiation, the tested applications performed equally well. However, when population differentiation was weak, STRUCTURE was the only method that allowed unbiased inference with markers with limited genotypic information (co-dominant markers with unknown dosage or dominant markers). Still, since STRUCTURE was comparatively slow, the much faster but less powerful FASTSTRUCTURE provides a reasonable alternative for large datasets. Finally, although bias makes k-means clustering unsuitable for markers with incomplete genotype information, for large numbers of loci (>1000) with known dosage k-means clustering was superior to FASTSTRUCTURE in terms of power and speed. We conclude that STRUCTURE is the most robust method for the analysis of genetic structure in mixed-ploidy populations, although alternative methods should be considered under some specific conditions.
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a diploidie $7 D004171
- 650 _2
- $a genetické markery $x genetika $7 D005819
- 650 _2
- $a genetická variace $x genetika $7 D014644
- 650 _2
- $a populační genetika $x statistika a číselné údaje $7 D005828
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a mikrosatelitní repetice $x genetika $7 D018895
- 650 12
- $a ploidie $7 D011003
- 650 _2
- $a jednonukleotidový polymorfismus $x genetika $7 D020641
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kolář, Filip $u Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czechia. Department of Botany, University of Innsbruck, Innsbruck, Austria.
- 700 1_
- $a Meirmans, Patrick G $u Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. p.g.meirmans@uva.nl.
- 773 0_
- $w MED00002030 $t Heredity $x 1365-2540 $g Roč. 123, č. 4 (2019), s. 429-441
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31285566 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214130643 $b ABA008
- 999 __
- $a ok $b bmc $g 1595948 $s 1114305
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 123 $c 4 $d 429-441 $e 20190708 $i 1365-2540 $m Heredity $n Heredity $x MED00002030
- LZP __
- $a Pubmed-20201125