-
Je něco špatně v tomto záznamu ?
A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions
RJ. Wallace, G. Sasson, PC. Garnsworthy, I. Tapio, E. Gregson, P. Bani, P. Huhtanen, AR. Bayat, F. Strozzi, F. Biscarini, TJ. Snelling, N. Saunders, SL. Potterton, J. Craigon, A. Minuti, E. Trevisi, ML. Callegari, FP. Cappelli, EH....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Freely Accessible Science Journals
od 2015
PubMed Central
od 2015
Europe PubMed Central
od 2015
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2015
PubMed
31281883
DOI
10.1126/sciadv.aav8391
Knihovny.cz E-zdroje
- MeSH
- bachor metabolismus MeSH
- fenotyp MeSH
- fylogeneze MeSH
- kohortové studie MeSH
- krev metabolismus MeSH
- methan metabolismus MeSH
- mléko metabolismus MeSH
- skot genetika mikrobiologie MeSH
- střevní mikroflóra genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot genetika mikrobiologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
Institute of Animal Physiology and Genetics CAS v v i Vídeňská 1083 Prague 14220 Czech Republic
Institute of Microbiology Università Cattolica del Sacro Cuore 29122 Piacenza Italy
Laboratoire d'Ecologie Alpine Domaine Universitaire de St Martin d'Hères CNRS 38041 Grenoble France
Parco Tecnologico Padano Via Einstein 26900 Lodi Italy
Production Systems Natural Resources Institute Finland 31600 Jokioinen Finland
The Rowett Institute University of Aberdeen Ashgrove Road West Aberdeen AB25 2ZD UK
University of Nottingham School of Biosciences Sutton Bonington Campus Loughborough LE12 5RD UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023832
- 003
- CZ-PrNML
- 005
- 20201214131347.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/sciadv.aav8391 $2 doi
- 035 __
- $a (PubMed)31281883
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Wallace, R John $u The Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK.
- 245 12
- $a A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions / $c RJ. Wallace, G. Sasson, PC. Garnsworthy, I. Tapio, E. Gregson, P. Bani, P. Huhtanen, AR. Bayat, F. Strozzi, F. Biscarini, TJ. Snelling, N. Saunders, SL. Potterton, J. Craigon, A. Minuti, E. Trevisi, ML. Callegari, FP. Cappelli, EH. Cabezas-Garcia, J. Vilkki, C. Pinares-Patino, KO. Fliegerová, J. Mrázek, H. Sechovcová, J. Kopečný, A. Bonin, F. Boyer, P. Taberlet, F. Kokou, E. Halperin, JL. Williams, KJ. Shingfield, I. Mizrahi,
- 520 9_
- $a A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a krev $x metabolismus $7 D001769
- 650 _2
- $a skot $x genetika $x mikrobiologie $7 D002417
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a střevní mikroflóra $x genetika $x fyziologie $7 D000069196
- 650 _2
- $a methan $x metabolismus $7 D008697
- 650 _2
- $a mléko $x metabolismus $7 D008892
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a bachor $x metabolismus $7 D012417
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sasson, Goor $u Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- 700 1_
- $a Garnsworthy, Philip C $u University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
- 700 1_
- $a Tapio, Ilma $u Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
- 700 1_
- $a Gregson, Emma $u University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
- 700 1_
- $a Bani, Paolo $u Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
- 700 1_
- $a Huhtanen, Pekka $u Swedish University of Agricultural Sciences, Department of Agriculture for Northern Sweden, S-90 183 Umeå, Sweden.
- 700 1_
- $a Bayat, Ali R $u Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
- 700 1_
- $a Strozzi, Francesco $u Parco Tecnologico Padano, Via Einstein, 26900 Lodi, Italy.
- 700 1_
- $a Biscarini, Filippo $u Parco Tecnologico Padano, Via Einstein, 26900 Lodi, Italy.
- 700 1_
- $a Snelling, Timothy J $u The Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK.
- 700 1_
- $a Saunders, Neil $u University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
- 700 1_
- $a Potterton, Sarah L $u University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
- 700 1_
- $a Craigon, James $u University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
- 700 1_
- $a Minuti, Andrea $u Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
- 700 1_
- $a Trevisi, Erminio $u Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
- 700 1_
- $a Callegari, Maria L $u Institute of Microbiology, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
- 700 1_
- $a Cappelli, Fiorenzo Piccioli $u Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
- 700 1_
- $a Cabezas-Garcia, Edward H $u Swedish University of Agricultural Sciences, Department of Agriculture for Northern Sweden, S-90 183 Umeå, Sweden.
- 700 1_
- $a Vilkki, Johanna $u Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
- 700 1_
- $a Pinares-Patino, Cesar $u Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
- 700 1_
- $a Fliegerová, Kateřina O $u Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic.
- 700 1_
- $a Mrázek, Jakub $u Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic.
- 700 1_
- $a Sechovcová, Hana $u Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic.
- 700 1_
- $a Kopečný, Jan $u Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic.
- 700 1_
- $a Bonin, Aurélie $u Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France.
- 700 1_
- $a Boyer, Frédéric $u Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France.
- 700 1_
- $a Taberlet, Pierre $u Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France.
- 700 1_
- $a Kokou, Fotini $u Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- 700 1_
- $a Halperin, Eran $u Departments of Computer Science, Computational Medicine, Human Genetics, and Anesthesiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- 700 1_
- $a Williams, John L $u Parco Tecnologico Padano, Via Einstein, 26900 Lodi, Italy.
- 700 1_
- $a Shingfield, Kevin J $u Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
- 700 1_
- $a Mizrahi, Itzhak $u Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- 773 0_
- $w MED00188818 $t Science advances $x 2375-2548 $g Roč. 5, č. 7 (2019), s. eaav8391
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31281883 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214131344 $b ABA008
- 999 __
- $a ok $b bmc $g 1596151 $s 1114508
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 5 $c 7 $d eaav8391 $e 20190703 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
- LZP __
- $a Pubmed-20201125