-
Je něco špatně v tomto záznamu ?
Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans
V. Sedláček, I. Kučera,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1997 do Před 18 měsíci
Wiley Free Content
od 1997 do Před 18 měsíci
PubMed
30977245
DOI
10.1111/mmi.14260
Knihovny.cz E-zdroje
- MeSH
- flavinadenindinukleotid metabolismus MeSH
- flavinmononukleotid metabolismus MeSH
- flaviny metabolismus MeSH
- FMN-reduktasa genetika metabolismus MeSH
- NADP MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- oxidace-redukce MeSH
- Paracoccus denitrificans genetika metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- terciární struktura proteinů MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023861
- 003
- CZ-PrNML
- 005
- 20201214131454.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/mmi.14260 $2 doi
- 035 __
- $a (PubMed)30977245
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Sedláček, Vojtěch $u Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
- 245 10
- $a Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans / $c V. Sedláček, I. Kučera,
- 520 9_
- $a Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
- 650 _2
- $a sekvence aminokyselin $x genetika $7 D000595
- 650 _2
- $a transport elektronů $7 D004579
- 650 _2
- $a FMN-reduktasa $x genetika $x metabolismus $7 D038181
- 650 _2
- $a flavinmononukleotid $x metabolismus $7 D005486
- 650 _2
- $a flavinadenindinukleotid $x metabolismus $7 D005182
- 650 _2
- $a flaviny $x metabolismus $7 D005415
- 650 _2
- $a NADP $7 D009249
- 650 _2
- $a NADPH-cytochrom c-reduktasa $x metabolismus $7 D009251
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a Paracoccus denitrificans $x genetika $x metabolismus $7 D010231
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kučera, Igor $u Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
- 773 0_
- $w MED00003398 $t Molecular microbiology $x 1365-2958 $g Roč. 112, č. 1 (2019), s. 166-183
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30977245 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214131453 $b ABA008
- 999 __
- $a ok $b bmc $g 1596180 $s 1114537
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 112 $c 1 $d 166-183 $e 20190426 $i 1365-2958 $m Molecular microbiology $n Mol Microbiol $x MED00003398
- LZP __
- $a Pubmed-20201125