-
Je něco špatně v tomto záznamu ?
Deep-learning for seizure forecasting in canines with epilepsy
P. Nejedly, V. Kremen, V. Sladky, M. Nasseri, H. Guragain, P. Klimes, J. Cimbalnik, Y. Varatharajah, BH. Brinkmann, GA. Worrell,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
PubMed
30959492
DOI
10.1088/1741-2552/ab172d
Knihovny.cz E-zdroje
- MeSH
- deep learning * MeSH
- elektrokortikografie přístrojové vybavení metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- implantované elektrody * MeSH
- předpověď MeSH
- psi MeSH
- záchvaty diagnóza patofyziologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. APPROACH: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. MAIN RESULTS: The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p < 0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. SIGNIFICANCE: Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023909
- 003
- CZ-PrNML
- 005
- 20201214131646.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ab172d $2 doi
- 035 __
- $a (PubMed)30959492
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Nejedly, Petr $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 245 10
- $a Deep-learning for seizure forecasting in canines with epilepsy / $c P. Nejedly, V. Kremen, V. Sladky, M. Nasseri, H. Guragain, P. Klimes, J. Cimbalnik, Y. Varatharajah, BH. Brinkmann, GA. Worrell,
- 520 9_
- $a OBJECTIVE: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. APPROACH: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. MAIN RESULTS: The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p < 0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. SIGNIFICANCE: Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a psi $7 D004285
- 650 _2
- $a elektrokortikografie $x přístrojové vybavení $x metody $7 D000069280
- 650 12
- $a implantované elektrody $7 D004567
- 650 _2
- $a epilepsie $x diagnóza $x patofyziologie $7 D004827
- 650 _2
- $a předpověď $7 D005544
- 650 _2
- $a záchvaty $x diagnóza $x patofyziologie $7 D012640
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kremen, Vaclav
- 700 1_
- $a Sladky, Vladimir
- 700 1_
- $a Nasseri, Mona
- 700 1_
- $a Guragain, Hari
- 700 1_
- $a Klimes, Petr
- 700 1_
- $a Cimbalnik, Jan
- 700 1_
- $a Varatharajah, Yogatheesan
- 700 1_
- $a Brinkmann, Benjamin H
- 700 1_
- $a Worrell, Gregory A
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 16, č. 3 (2019), s. 036031
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30959492 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214131645 $b ABA008
- 999 __
- $a ok $b bmc $g 1596228 $s 1114585
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 16 $c 3 $d 036031 $e 20190408 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20201125