• Je něco špatně v tomto záznamu ?

Deep-learning for seizure forecasting in canines with epilepsy

P. Nejedly, V. Kremen, V. Sladky, M. Nasseri, H. Guragain, P. Klimes, J. Cimbalnik, Y. Varatharajah, BH. Brinkmann, GA. Worrell,

. 2019 ; 16 (3) : 036031. [pub] 20190408

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023909

OBJECTIVE: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. APPROACH: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. MAIN RESULTS: The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p   <  0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. SIGNIFICANCE: Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023909
003      
CZ-PrNML
005      
20201214131646.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ab172d $2 doi
035    __
$a (PubMed)30959492
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Nejedly, Petr $u Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America. International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic. The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
245    10
$a Deep-learning for seizure forecasting in canines with epilepsy / $c P. Nejedly, V. Kremen, V. Sladky, M. Nasseri, H. Guragain, P. Klimes, J. Cimbalnik, Y. Varatharajah, BH. Brinkmann, GA. Worrell,
520    9_
$a OBJECTIVE: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy. APPROACH: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model. The trained CNN models were deployed on a hand-held tablet computer and tested on testing iEEG datasets from four canines. The results from the iEEG testing datasets were compared with Monte Carlo simulations using a Poisson random predictor with equal time in warning to evaluate seizure forecasting performance. MAIN RESULTS: The results show the CNN models forecasted seizures at rates significantly above chance in all four dogs (p   <  0.01, with mean 0.79 sensitivity and 18% time in warning). The deep learning method presented here surpassed the performance of previously reported methods using computationally expensive features with standard machine learning methods like logistic regression and support vector machine classifiers. SIGNIFICANCE: Our findings principally support the feasibility of deploying trained CNN models on a hand-held computational device (Mayo Epilepsy Assist Device) that analyzes streaming iEEG data for real-time seizure forecasting.
650    _2
$a zvířata $7 D000818
650    12
$a deep learning $7 D000077321
650    _2
$a psi $7 D004285
650    _2
$a elektrokortikografie $x přístrojové vybavení $x metody $7 D000069280
650    12
$a implantované elektrody $7 D004567
650    _2
$a epilepsie $x diagnóza $x patofyziologie $7 D004827
650    _2
$a předpověď $7 D005544
650    _2
$a záchvaty $x diagnóza $x patofyziologie $7 D012640
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kremen, Vaclav
700    1_
$a Sladky, Vladimir
700    1_
$a Nasseri, Mona
700    1_
$a Guragain, Hari
700    1_
$a Klimes, Petr
700    1_
$a Cimbalnik, Jan
700    1_
$a Varatharajah, Yogatheesan
700    1_
$a Brinkmann, Benjamin H
700    1_
$a Worrell, Gregory A
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 16, č. 3 (2019), s. 036031
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30959492 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214131645 $b ABA008
999    __
$a ok $b bmc $g 1596228 $s 1114585
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 16 $c 3 $d 036031 $e 20190408 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...