• Je něco špatně v tomto záznamu ?

Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system

KS. Al Souki, C. Liné, B. Louvel, C. Waterlot, F. Douay, B. Pourrut,

. 2020 ; 199 (-) : 110654. [pub] 20200511

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20024840

Miscanthus x giganteus is suggested as a good candidate for phytostabilization of metal-polluted soils. Its late harvest in winter generates large amounts of leaf litter on the soil surface. However, little is known about the mobility and the bioavailability of metals following leaf decomposition and the consequences on the succeeding culture. Ex situ artificial aging for 1, 3, and 6 months was conducted with miscanthus leaf fragments incorporated into three agricultural soils displaying a gradient concentration in Cd (0.6, 3.1 and 7.9 mg kg-1), Pb (32.0, 194.6 and 468.6 mg kg-1), and Zn (48.4, 276.3 and 490.2 mg kg-1) to simulate the leaf litter input over 20 years of miscanthus culture. We investigated the impacts on physicochemical and biological soil parameters, CaCl2-extractable metal, and their subsequent ryegrass shoot concentrations, and hence on ryegrass health. The results showed that the amended soils possessed higher pH along with greater available phosphorous and soil organic carbon values. The respiratory activity and microbial biomass carbon in the amended soils increased mainly after 1 month of aging, and decreased afterwards. Despite the higher Pb- and Zn-CaCl2 extractability in the amended soils, the phytoavailability slightly increased only in the most contaminated soils. Moreover, leaf incorporation did not affect the ryegrass biomass, photosynthetic pigment contents, nor the antioxidative enzyme activities. Conclusively, leaf incorporation induced slight variations in soil physicochemical and biological parameters, as well as metal extractability, but not to an extent that might cause a considerable threat to the subsequent culture. Nevertheless, these results are preliminary data that require confirmation by long-term in-situ experimentations as they reflect the modelization of long-term impact of leaf decomposition on soil-plant system.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20024840
003      
CZ-PrNML
005      
20201222160011.0
007      
ta
008      
201125s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ecoenv.2020.110654 $2 doi
035    __
$a (PubMed)32402897
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Al Souki, Karim Suhail $u Faculty of Environment, University of Jan Evangelista Purkyne, Kralova Vysina 3132/7, Usti nad Labem, 400 96, Czech Republic; Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, 59046, Lille Cedex, France.
245    10
$a Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system / $c KS. Al Souki, C. Liné, B. Louvel, C. Waterlot, F. Douay, B. Pourrut,
520    9_
$a Miscanthus x giganteus is suggested as a good candidate for phytostabilization of metal-polluted soils. Its late harvest in winter generates large amounts of leaf litter on the soil surface. However, little is known about the mobility and the bioavailability of metals following leaf decomposition and the consequences on the succeeding culture. Ex situ artificial aging for 1, 3, and 6 months was conducted with miscanthus leaf fragments incorporated into three agricultural soils displaying a gradient concentration in Cd (0.6, 3.1 and 7.9 mg kg-1), Pb (32.0, 194.6 and 468.6 mg kg-1), and Zn (48.4, 276.3 and 490.2 mg kg-1) to simulate the leaf litter input over 20 years of miscanthus culture. We investigated the impacts on physicochemical and biological soil parameters, CaCl2-extractable metal, and their subsequent ryegrass shoot concentrations, and hence on ryegrass health. The results showed that the amended soils possessed higher pH along with greater available phosphorous and soil organic carbon values. The respiratory activity and microbial biomass carbon in the amended soils increased mainly after 1 month of aging, and decreased afterwards. Despite the higher Pb- and Zn-CaCl2 extractability in the amended soils, the phytoavailability slightly increased only in the most contaminated soils. Moreover, leaf incorporation did not affect the ryegrass biomass, photosynthetic pigment contents, nor the antioxidative enzyme activities. Conclusively, leaf incorporation induced slight variations in soil physicochemical and biological parameters, as well as metal extractability, but not to an extent that might cause a considerable threat to the subsequent culture. Nevertheless, these results are preliminary data that require confirmation by long-term in-situ experimentations as they reflect the modelization of long-term impact of leaf decomposition on soil-plant system.
650    _2
$a biodegradace $7 D001673
650    _2
$a biologická dostupnost $7 D001682
650    _2
$a biomasa $7 D018533
650    _2
$a jílek $x růst a vývoj $x metabolismus $7 D008129
650    _2
$a těžké kovy $x analýza $x metabolismus $7 D019216
650    12
$a teoretické modely $7 D008962
650    _2
$a listy rostlin $x metabolismus $7 D018515
650    _2
$a kořeny rostlin $x metabolismus $7 D018517
650    12
$a lipnicovité $x růst a vývoj $x metabolismus $7 D006109
650    _2
$a půda $x chemie $7 D012987
650    _2
$a látky znečišťující půdu $x analýza $x metabolismus $7 D012989
655    _2
$a časopisecké články $7 D016428
700    1_
$a Liné, Clarisse $u ECOLAB, Université de Toulouse, CNRS, INPT, UPS - ENSAT, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France.
700    1_
$a Louvel, Brice $u Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, 59046, Lille Cedex, France.
700    1_
$a Waterlot, Christophe $u Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, 59046, Lille Cedex, France.
700    1_
$a Douay, Francis $u Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, 59046, Lille Cedex, France.
700    1_
$a Pourrut, Bertrand $u Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille, Yncréa Hauts-de-France, 48 Boulevard Vauban, 59046, Lille Cedex, France; ECOLAB, Université de Toulouse, CNRS, INPT, UPS - ENSAT, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France. Electronic address: bertrand.pourrut@ensat.fr.
773    0_
$w MED00001478 $t Ecotoxicology and environmental safety $x 1090-2414 $g Roč. 199, č. - (2020), s. 110654
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32402897 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222160007 $b ABA008
999    __
$a ok $b bmc $g 1598985 $s 1115526
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 199 $c - $d 110654 $e 20200511 $i 1090-2414 $m Ecotoxicology and environmental safety $n Ecotoxicol Environ Safety $x MED00001478
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...