• Je něco špatně v tomto záznamu ?

Automata complete computation with Hodgkin-Huxley neural networks composed of synfire rings

J. Cabessa, A. Tchaptchet,

. 2020 ; 126 (-) : 312-334. [pub] 20200328

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20024990

Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin-Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin-Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20024990
003      
CZ-PrNML
005      
20201222155002.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2020.03.019 $2 doi
035    __
$a (PubMed)32278841
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cabessa, Jérémie $u Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), Université Paris 2, Panthéon-Assas, 75005 Paris, France; Institute of Computer Science of the Czech Academy of Sciences, P. O. Box 5, 18207 Prague 8, Czech Republic. Electronic address: jeremie.cabessa@u-paris2.fr.
245    10
$a Automata complete computation with Hodgkin-Huxley neural networks composed of synfire rings / $c J. Cabessa, A. Tchaptchet,
520    9_
$a Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin-Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin-Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a lidé $7 D006801
650    12
$a modely neurologické $7 D008959
650    12
$a neuronové sítě $7 D016571
655    _2
$a časopisecké články $7 D016428
700    1_
$a Tchaptchet, Aubin $u Institute of Physiology, Philipps University of Marburg, 35037 Marburg, Germany. Electronic address: aubin.tchaptchet@gmail.com.
773    0_
$w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 126, č. - (2020), s. 312-334
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32278841 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154958 $b ABA008
999    __
$a ok $b bmc $g 1599135 $s 1115676
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 126 $c - $d 312-334 $e 20200328 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...