-
Je něco špatně v tomto záznamu ?
Automata complete computation with Hodgkin-Huxley neural networks composed of synfire rings
J. Cabessa, A. Tchaptchet,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- akční potenciály fyziologie MeSH
- lidé MeSH
- modely neurologické * MeSH
- neuronové sítě * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin-Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin-Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024990
- 003
- CZ-PrNML
- 005
- 20201222155002.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2020.03.019 $2 doi
- 035 __
- $a (PubMed)32278841
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cabessa, Jérémie $u Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), Université Paris 2, Panthéon-Assas, 75005 Paris, France; Institute of Computer Science of the Czech Academy of Sciences, P. O. Box 5, 18207 Prague 8, Czech Republic. Electronic address: jeremie.cabessa@u-paris2.fr.
- 245 10
- $a Automata complete computation with Hodgkin-Huxley neural networks composed of synfire rings / $c J. Cabessa, A. Tchaptchet,
- 520 9_
- $a Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin-Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin-Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a modely neurologické $7 D008959
- 650 12
- $a neuronové sítě $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Tchaptchet, Aubin $u Institute of Physiology, Philipps University of Marburg, 35037 Marburg, Germany. Electronic address: aubin.tchaptchet@gmail.com.
- 773 0_
- $w MED00011811 $t Neural networks : the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 126, č. - (2020), s. 312-334
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32278841 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154958 $b ABA008
- 999 __
- $a ok $b bmc $g 1599135 $s 1115676
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 126 $c - $d 312-334 $e 20200328 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20201125