Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

ToyArchitecture: Unsupervised learning of interpretable models of the environment

J. Vítků, P. Dluhoš, J. Davidson, M. Nikl, S. Andersson, P. Paška, J. Šinkora, P. Hlubuček, M. Stránský, M. Hyben, M. Poliak, J. Feyereisl, M. Rosa,

. 2020 ; 15 (5) : e0230432. [pub] 20200518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025006

Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are often uncomputable, or lack practical implementations. In this paper we attempt to follow a big picture view while also providing a particular theory and its implementation to present a novel, purposely simple, and interpretable hierarchical architecture. This architecture incorporates the unsupervised learning of a model of the environment, learning the influence of one's own actions, model-based reinforcement learning, hierarchical planning, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations which are increasingly more abstract, but can retain details when needed. We demonstrate the universality of the architecture by testing it on a series of diverse environments ranging from audio/visual compression to discrete and continuous action spaces, to learning disentangled representations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025006
003      
CZ-PrNML
005      
20201222155008.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0230432 $2 doi
035    __
$a (PubMed)32421693
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Vítků, Jaroslav $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
245    10
$a ToyArchitecture: Unsupervised learning of interpretable models of the environment / $c J. Vítků, P. Dluhoš, J. Davidson, M. Nikl, S. Andersson, P. Paška, J. Šinkora, P. Hlubuček, M. Stránský, M. Hyben, M. Poliak, J. Feyereisl, M. Rosa,
520    9_
$a Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are often uncomputable, or lack practical implementations. In this paper we attempt to follow a big picture view while also providing a particular theory and its implementation to present a novel, purposely simple, and interpretable hierarchical architecture. This architecture incorporates the unsupervised learning of a model of the environment, learning the influence of one's own actions, model-based reinforcement learning, hierarchical planning, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations which are increasingly more abstract, but can retain details when needed. We demonstrate the universality of the architecture by testing it on a series of diverse environments ranging from audio/visual compression to discrete and continuous action spaces, to learning disentangled representations.
650    _2
$a algoritmy $7 D000465
650    12
$a umělá inteligence $7 D001185
650    12
$a životní prostředí $7 D004777
650    _2
$a lidé $7 D006801
650    _2
$a učení $x fyziologie $7 D007858
650    _2
$a neuronové sítě $7 D016571
650    _2
$a posilování (psychologie) $7 D012054
650    _2
$a strojové učení bez učitele $7 D000069558
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dluhoš, Petr $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Davidson, Joseph $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Nikl, Matěj $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Andersson, Simon $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Paška, Přemysl $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Šinkora, Jan $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Hlubuček, Petr $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Stránský, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Hyben, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Poliak, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Feyereisl, Jan $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
700    1_
$a Rosa, Marek $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 15, č. 5 (2020), s. e0230432
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32421693 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155004 $b ABA008
999    __
$a ok $b bmc $g 1599151 $s 1115692
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 15 $c 5 $d e0230432 $e 20200518 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...