-
Je něco špatně v tomto záznamu ?
ToyArchitecture: Unsupervised learning of interpretable models of the environment
J. Vítků, P. Dluhoš, J. Davidson, M. Nikl, S. Andersson, P. Paška, J. Šinkora, P. Hlubuček, M. Stránský, M. Hyben, M. Poliak, J. Feyereisl, M. Rosa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- algoritmy MeSH
- lidé MeSH
- neuronové sítě MeSH
- posilování (psychologie) MeSH
- strojové učení bez učitele MeSH
- učení fyziologie MeSH
- umělá inteligence * MeSH
- životní prostředí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are often uncomputable, or lack practical implementations. In this paper we attempt to follow a big picture view while also providing a particular theory and its implementation to present a novel, purposely simple, and interpretable hierarchical architecture. This architecture incorporates the unsupervised learning of a model of the environment, learning the influence of one's own actions, model-based reinforcement learning, hierarchical planning, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations which are increasingly more abstract, but can retain details when needed. We demonstrate the universality of the architecture by testing it on a series of diverse environments ranging from audio/visual compression to discrete and continuous action spaces, to learning disentangled representations.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025006
- 003
- CZ-PrNML
- 005
- 20201222155008.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0230432 $2 doi
- 035 __
- $a (PubMed)32421693
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vítků, Jaroslav $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 245 10
- $a ToyArchitecture: Unsupervised learning of interpretable models of the environment / $c J. Vítků, P. Dluhoš, J. Davidson, M. Nikl, S. Andersson, P. Paška, J. Šinkora, P. Hlubuček, M. Stránský, M. Hyben, M. Poliak, J. Feyereisl, M. Rosa,
- 520 9_
- $a Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are often uncomputable, or lack practical implementations. In this paper we attempt to follow a big picture view while also providing a particular theory and its implementation to present a novel, purposely simple, and interpretable hierarchical architecture. This architecture incorporates the unsupervised learning of a model of the environment, learning the influence of one's own actions, model-based reinforcement learning, hierarchical planning, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations which are increasingly more abstract, but can retain details when needed. We demonstrate the universality of the architecture by testing it on a series of diverse environments ranging from audio/visual compression to discrete and continuous action spaces, to learning disentangled representations.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a umělá inteligence $7 D001185
- 650 12
- $a životní prostředí $7 D004777
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a učení $x fyziologie $7 D007858
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a posilování (psychologie) $7 D012054
- 650 _2
- $a strojové učení bez učitele $7 D000069558
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Dluhoš, Petr $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Davidson, Joseph $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Nikl, Matěj $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Andersson, Simon $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Paška, Přemysl $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Šinkora, Jan $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Hlubuček, Petr $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Stránský, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Hyben, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Poliak, Martin $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Feyereisl, Jan $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 700 1_
- $a Rosa, Marek $u GoodAI Research s.r.o., Karolinská, Prague, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 15, č. 5 (2020), s. e0230432
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32421693 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155004 $b ABA008
- 999 __
- $a ok $b bmc $g 1599151 $s 1115692
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 15 $c 5 $d e0230432 $e 20200518 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20201125