Tubulocystic renal cell carcinoma: is there a rational reason for targeted therapy using angiogenic inhibition? Analysis of seven cases
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
- MeSH
- cílená molekulární terapie metody MeSH
- dospělí MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- fosforylace MeSH
- inhibitory angiogeneze farmakologie terapeutické užití MeSH
- karcinom z renálních buněk krevní zásobení farmakoterapie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorový supresorový protein VHL metabolismus MeSH
- nádory ledvin krevní zásobení farmakoterapie metabolismus MeSH
- patologická angiogeneze farmakoterapie genetika MeSH
- senioři MeSH
- signální transdukce účinky léků genetika MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- transkripční faktory bHLH metabolismus MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endothelial PAS domain-containing protein 1 MeSH Prohlížeč
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- HIF1A protein, human MeSH Prohlížeč
- inhibitory angiogeneze MeSH
- MTOR protein, human MeSH Prohlížeč
- nádorový supresorový protein VHL MeSH
- TOR serin-threoninkinasy MeSH
- transkripční faktory bHLH MeSH
- vaskulární endoteliální růstový faktor A MeSH
- VEGFA protein, human MeSH Prohlížeč
- VHL protein, human MeSH Prohlížeč
Generally, patients with renal cell carcinoma (RCC) are viewed as potential candidates for antiangiogenic targeted therapy. Tubulocystic RCC (TCRC) is a recently described entity which may behave aggressively, and the rationale for antiangiogenic therapy in this group of renal tumors has yet to be determined. Seven TCRCs and five non-tumor tissue samples from seven patients were subjected to relative expression analysis of mRNA levels of 16 genes involved in three angiogenic signal pathways: (1) VHL/HIF, (2) RTK/mitogen-activated protein kinase (MAPK), and (3) PI3K/Akt/mTOR. Two of them, pathways (2) and (3), are often targeted by antiangiogenic agents. We also determined the mutation and methylation status of the VHL gene. Finally, the levels of vascular endothelial growth factor A (VEGFA), HIF-1α, HIF-2α proteins, and phosphorylated mTOR protein were also determined. The comparison of tumor and control samples revealed no changes of mRNA levels of the following genes: VHL, HIF-1α, HIF-2α, PTEN, Akt2, Akt3, mTOR, VEGFA, KDR, HRas, C-Jun, EGFR, and FGF2. Significantly elevated mRNA level of TP53 was found, while the mRNA levels of FLT1 and C-FOS were reduced in tumor samples. No mutations or methylation in the VHL gene were found. Changes in levels of studied proteins VEGFA, HIF-1α, HIF-2α, and increased phosphorylation of mTOR protein were not found. Three studied angiogenic pathways (VHL/HIF, RTK/MAPK, and PI3K/Akt/mTOR) seem not to be upregulated in TCRC samples, so there appears to be no rationale for a general recommendation of antiangiogenic targeted therapeutic protocols for patients with these tumors.
Zobrazit více v PubMed
Oncol Rep. 2008 Sep;20(3):501-9 PubMed
Cancer. 2007 Jun 1;109(11):2257-67 PubMed
Expert Rev Anticancer Ther. 2010 Jun;10(6):843-64 PubMed
Pol J Pathol. 2008;59(3):129-76 PubMed
J Biol Chem. 2003 May 2;278(18):15461-4 PubMed
J Biol Chem. 1997 Sep 12;272(37):23435-9 PubMed
Biomed Res. 2009 Jun;30(3):171-6 PubMed
Biotechniques. 2007 Nov;43(5):639-40, 642-3, 647 PubMed
Oncologist. 2011;16 Suppl 2:14-22 PubMed
J Natl Cancer Inst. 2002 Oct 16;94(20):1569-75 PubMed
Am J Surg Pathol. 2009 Jul;33(7):1103-6 PubMed
Expert Rev Anticancer Ther. 2011 Jun;11(6):921-30 PubMed
Genes Dev. 2000 Jan 1;14(1):34-44 PubMed
Oncogene. 2000 Nov 16;19(48):5435-43 PubMed
J Mol Diagn. 2005 May;7(2):206-18 PubMed
Virchows Arch. 2000 Apr;436(4):351-6 PubMed
Cancer. 2009 May 15;115(10 Suppl):2306-12 PubMed
Cancer Res. 1994 Aug 1;54(15):4233-7 PubMed
Am J Surg Pathol. 2009 Mar;33(3):384-92 PubMed
Urology. 1997 Nov;50(5):679-84 PubMed
Clin Cancer Res. 2005 Aug 15;11(16):5730-9 PubMed
Am J Physiol Renal Physiol. 2006 Aug;291(2):F271-81 PubMed
Histopathology. 2005 Jan;46(1):31-6 PubMed
Clin Med Insights Oncol. 2010 Dec 19;4:143-54 PubMed
World J Urol. 2011 Jun;29(3):349-54 PubMed
Am J Physiol Cell Physiol. 2008 Jan;294(1):C345-54 PubMed
Clin Cancer Res. 2007 Jan 15;13(2 Pt 2):758s-763s PubMed
Nat Rev Urol. 2011 May;8(5):255-65 PubMed
Am J Surg Pathol. 2009 Dec;33(12):1840-9 PubMed
Magy Onkol. 2010 Dec;54(4):369-76 PubMed
J Biol Chem. 2006 Sep 8;281(36):25903-14 PubMed
Anal Cell Pathol (Amst). 2010;33(3):121-32 PubMed
Semin Diagn Pathol. 1998 Feb;15(1):54-67 PubMed
Int J Oncol. 2006 Oct;29(4):799-827 PubMed
Virchows Arch. 2007 Nov;451(5):905-9 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Cancer. 2009 May 15;115(10 Suppl):2262-72 PubMed
J Med Invest. 2006 Feb;53(1-2):9-19 PubMed
Nat Genet. 1994 May;7(1):85-90 PubMed
Pediatr Dev Pathol. 1999 May-Jun;2(3):270-4 PubMed
Virchows Arch. 2008 Feb;452(2):193-200 PubMed
Clin Genitourin Cancer. 2007 Sep;5(6):379-85 PubMed
IUBMB Life. 2001 Jul;52(1-2):49-53 PubMed
Invest New Drugs. 2012 Aug;30(4):1791-801 PubMed
Mol Cell Biol. 2002 Apr;22(8):2515-23 PubMed
Int J Biochem Cell Biol. 2001 Apr;33(4):409-20 PubMed
Urol J. 2010 Winter;7(1):1-9 PubMed
Nucleic Acids Res. 2009 Apr;37(6):e45 PubMed
Ann Oncol. 2008 Sep;19(9):1655-6 PubMed
Am J Surg Pathol. 2008 Feb;32(2):177-87 PubMed
Cancer Cell. 2004 Sep;6(3):223-8 PubMed