Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development

. 2021 Jul 15 ; 148 (14) : . [epub] 20210722

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid34195802

Grantová podpora
BB/L002965/1 Biotechnology and Biological Sciences Research Council - United Kingdom
F30 DE025160 NIDCR NIH HHS - United States
R01 DE028496 NIDCR NIH HHS - United States
R35 DE026602 NIDCR NIH HHS - United States

Tooth formation requires complex signaling interactions both within the oral epithelium and between the epithelium and the underlying mesenchyme. Previous studies of the Wnt/β-catenin pathway have shown that tooth formation is partly inhibited in loss-of-function mutants, and gain-of-function mutants have perturbed tooth morphology. However, the stage at which Wnt signaling is first important in tooth formation remains unclear. Here, using an Fgf8-promoter-driven, and therefore early, deletion of β-catenin in mouse molar epithelium, we found that loss of Wnt/β-catenin signaling completely deletes the molar tooth, demonstrating that this pathway is central to the earliest stages of tooth formation. Early expression of a dominant-active β-catenin protein also perturbs tooth formation, producing a large domed evagination at early stages and supernumerary teeth later on. The early evaginations are associated with premature mesenchymal condensation marker, and are reduced by inhibition of condensation-associated collagen synthesis. We propose that invagination versus evagination morphogenesis is regulated by the relative timing of epithelial versus mesenchymal cell convergence regulated by canonical Wnt signaling. Together, these studies reveal new aspects of Wnt/β-catenin signaling in tooth formation and in epithelial morphogenesis more broadly.

Zobrazit více v PubMed

Andl, T., Reddy, S. T., Gaddapara, T. and Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643-653. 10.1016/S1534-5807(02)00167-3 PubMed DOI

Baker, N. L., Morgelin, M., Peat, R., Goemans, N., North, K. N., Bateman, J. F. and Lamande, S. R. (2005). Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum. Mol. Genet. 14, 279-293. 10.1093/hmg/ddi025 PubMed DOI

Baker, N. L., Morgelin, M., Pace, R. A., Peat, R. A., Adams, N. E., Gardner, R. J., Rowland, L. P., Miller, G., De Jonghe, P., Ceulemans, B.et al. (2007). Molecular consequences of dominant Bethlem myopathy collagen VI mutations. Ann. Neurol. 62, 390-405. 10.1002/ana.21213 PubMed DOI

Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., Sommer, L., Boussadia, O. and Kemler, R. (2001). Inactivation of the (β)-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253-1264. 10.1242/dev.128.8.1253 PubMed DOI

Blume, S. W., Snyder, R. C., Ray, R., Thomas, S., Koller, C. A. and Miller, D. M. (1991). Mithramycin inhibits Sp1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J. Clin. Invest. 88, 1613-1621. 10.1172/JCI115474 PubMed DOI PMC

Chen, J., Lan, Y., Baek, J. A., Gao, Y. and Jiang, R. (2009). Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev. Biol. 334, 174-185. 10.1016/j.ydbio.2009.07.015 PubMed DOI PMC

Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. 10.1016/j.cell.2006.10.018 PubMed DOI

Debnath, J., Mills, K. R., Collins, N. L., Reginato, M. J., Muthuswamy, S. K. and Brugge, J. S. (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29-40. 10.1016/S0092-8674(02)01001-2 PubMed DOI

Harada, N., Tamai, Y., Ishikawa, T., Sauer, B., Takaku, K., Oshima, M. and Taketo, M. M. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931-5942. 10.1093/emboj/18.21.5931 PubMed DOI PMC

Hoch, R. V., Clarke, J. A. and Rubenstein, J. L. (2015). Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev. 10, 8. 10.1186/s13064-015-0037-7 PubMed DOI PMC

Huelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C. and Birchmeier, W. (2000). Requirement for beta-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148, 567-578. 10.1083/jcb.148.3.567 PubMed DOI PMC

Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. and Birchmeier, W. (2001). β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545. 10.1016/S0092-8674(01)00336-1 PubMed DOI

Hughes, A. J., Miyazaki, H., Coyle, M. C., Zhang, J., Laurie, M. T., Chu, D., Vavrusova, Z., Schneider, R. A., Klein, O. D. and Gartner, Z. J. (2018). Engineered Tissue folding by mechanical compaction of the mesenchyme. Dev. Cell 44, 165-178.e166. 10.1016/j.devcel.2017.12.004 PubMed DOI PMC

Ihn, H., Ihn, Y. and Trojanowska, M. (2001). Spl phosphorylation induced by serum stimulates the human alpha2(I) collagen gene expression. J. Invest. Dermatol. 117, 301-308. 10.1046/j.0022-202x.2001.01371.x PubMed DOI

Jamora, C., DasGupta, R., Kocieniewski, P. and Fuchs, E. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317-322. 10.1038/nature01458 PubMed DOI PMC

Järvinen, E., Salazar-Ciudad, I., Birchmeier, W., Taketo, M. M., Jernvall, J. and Thesleff, I. (2006). Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc. Natl. Acad. Sci. U.S.A. 103, 18627-18632. 10.1073/pnas.0607289103 PubMed DOI PMC

Jarvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M. and Thesleff, I. (2018). Mesenchymal Wnt/beta-catenin signaling limits tooth number. Development 145, dev158048. 10.1242/dev.158048 PubMed DOI

Kozawa, Y., Yokota, R., Chisaka, H., Yamamoto, H., Suzuki, K. and Elsey, R. M. (2005). Evagination and invagination of the oral epithelium during tooth development in alligator mississippiensis. J. Hard Tissue Biol. 14, 170-171. 10.2485/jhtb.14.170 DOI

Lammi, L., Arte, S., Somer, M., Järvinen, H., Lahermo, P., Thesleff, I., Pirinen, S. and Nieminen, P. (2004). Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043-1050. 10.1086/386293 PubMed DOI PMC

Li, J., Chatzeli, L., Panousopoulou, E., Tucker, A. S. and Green, J. B. A. (2016). Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development 143, 670-681. 10.1242/dev.130187 PubMed DOI PMC

Liu, F., Chu, E. Y., Watt, B., Zhang, Y., Gallant, N. M., Andl, T., Yang, S. H., Lu, M. M., Piccolo, S., Schmidt-Ullrich, R.et al. (2008). Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol. 313, 210-224. 10.1016/j.ydbio.2007.10.016 PubMed DOI PMC

Liu, W., Shaver, T. M., Balasa, A., Ljungberg, M. C., Wang, X., Wen, S., Nguyen, H. and Van den Veyver, I. B. (2012). Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS ONE 7, e32331. 10.1371/journal.pone.0032331 PubMed DOI PMC

Mammoto, T., Mammoto, A., Jiang, A., Jiang, E., Hashmi, B. and Ingber, D. E. (2015). Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation. Dev. Dyn. 244, 713-723. 10.1002/dvdy.24264 PubMed DOI PMC

Metscher, B. D. (2009). MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 9, 11. 10.1186/1472-6793-9-11 PubMed DOI PMC

Murray, J. D. and Kulesa, P. M. (1996). On a dynamic reaction–diffusion mechanism: the spatial patterning of teeth primordia in the alligator. J. Chem. Soc. Faraday Trans. 92, 2927-2932. 10.1039/FT9969202927 DOI

Panousopoulou, E. and Green, J. B. (2016). Invagination of ectodermal placodes is driven by cell intercalation-mediated contraction of the suprabasal tissue canopy. PLoS Biol. 14, e1002405. 10.1371/journal.pbio.1002405 PubMed DOI PMC

Prochazka, J., Prochazkova, M., Du, W., Spoutil, F., Tureckova, J., Hoch, R., Shimogori, T., Sedlacek, R., Rubenstein, J. L., Wittmann, T.et al. (2015). Migration of founder epithelial cells drives proper molar tooth positioning and morphogenesis. Dev. Cell 35, 713-724. 10.1016/j.devcel.2015.11.025 PubMed DOI PMC

Riddle, R. D., Johnson, R. L., Laufer, E. and Tabin, C. (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401-1416. 10.1016/0092-8674(93)90626-2 PubMed DOI

Sadier, A., Twarogowska, M., Steklikova, K., Hayden, L., Lambert, A., Schneider, P., Laudet, V., Hovorakova, M., Calvez, V. and Pantalacci, S. (2019). Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning. PLoS Biol. 17, e3000064. 10.1371/journal.pbio.3000064 PubMed DOI PMC

Sasaki, T., Ito, Y., Xu, X., Han, J., Bringas, P., Jr., Maeda, T., Slavkin, H. C., Grosschedl, R. and Chai, Y. (2005). LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol. 278, 130-143. 10.1016/j.ydbio.2004.10.021 PubMed DOI

Shyer, A. E., Rodrigues, A. R., Schroeder, G. G., Kassianidou, E., Kumar, S. and Harland, R. M. (2017). Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357, 811-815. 10.1126/science.aai7868 PubMed DOI PMC

Sick, S., Reinker, S., Timmer, J. and Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447-1450. 10.1126/science.1130088 PubMed DOI

Smith, M. M., Johanson, Z., Butts, T., Ericsson, R., Modrell, M., Tulenko, F. J., Davis, M. C. and Fraser, G. J. (2015). Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii). Proc. Biol. Sci. 282, 20142700. 10.1098/rspb.2014.2700 PubMed DOI PMC

Stricker, J., Falzone, T. and Gardel, M. L. (2010). Mechanics of the F-actin cytoskeleton. J. Biomech. 43, 9-14. 10.1016/j.jbiomech.2009.09.003 PubMed DOI PMC

ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E. and Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508-518. 10.1016/j.stem.2008.09.013 PubMed DOI PMC

Thesleff, I. and Sharpe, P. (1997). Signalling networks regulating dental development. Mech. Dev. 67, 111-123. 10.1016/S0925-4773(97)00115-9 PubMed DOI

Tokita, M., Chaeychomsri, W. and Siruntawineti, J. (2013). Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 67, 260-273. 10.1111/j.1558-5646.2012.01752.x PubMed DOI

Tucker, A. S. and Sharpe, P. T. (1999). Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J. Dent. Res. 78, 826-834. 10.1177/00220345990780040201 PubMed DOI

Valenta, T., Hausmann, G. and Basler, K. (2012). The many faces and functions of beta-catenin. EMBO J. 31, 2714-2736. 10.1038/emboj.2012.150 PubMed DOI PMC

van Roy, F. and Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756-3788. 10.1007/s00018-008-8281-1 PubMed DOI PMC

Wang, X. P. and Fan, J. (2011). Molecular genetics of supernumerary tooth formation. Genesis 49, 261-277. 10.1002/dvg.20715 PubMed DOI PMC

Wang, X.-P., O'Connell, D. J., Lund, J. J., Saadi, I., Kuraguchi, M., Turbe-Doan, A., Cavallesco, R., Kim, H., Park, P. J., Harada, H.et al. (2009). Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 136, 1939-1949. 10.1242/dev.033803 PubMed DOI PMC

Widelitz, R. B., Jiang, T. X., Yu, M., Shen, T., Shen, J. Y., Wu, P., Yu, Z. and Chuong, C.-M.et al. (2003). Molecular biology of feather morphogenesis: a testable model for evo-devo research. J. Exp. Zool. B Mol. Dev. Evol. 298, 109-122. 10.1002/jez.b.29 PubMed DOI PMC

Yu, T. and Klein, O. D. (2020). Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 147, dev184754. 10.1242/dev.184754 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...