• Je něco špatně v tomto záznamu ?

Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines

R. Jakubicek, J. Chmelik, J. Jan, P. Ourednicek, L. Lambert, G. Gavelli,

. 2020 ; 183 (-) : 105081. [pub] 20190928

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025294

BACKGROUND AND OBJECTIVE: We present a fully automatic system based on learning approaches, which aims to localization and identification (labeling) of vertebrae in 3D computed tomography (CT) scans of possibly incomplete spines in patients with bone metastases and vertebral compressions. METHODS: The framework combines a set of 3D algorithms for i) spine detection using a convolution neural network (CNN) ii) spinal cord tracking based on combination of a CNN and a novel growing sphere method with a population optimization, iii) intervertebral discs localization using a novel approach of spatially variant filtering of intensity profiles and iv) vertebra labeling using a CNN-based classification combined with global dynamic optimization. RESULTS: The proposed algorithm has been validated in testing databases, including also a publicly available dataset. The mean error of intervertebral discs localization is 4.4 mm, and for vertebra labeling, the average rate of correctly identified vertebrae is 87.1%, which can be considered a good result with respect to the large share of highly distorted spines and incomplete spine scans. CONCLUSIONS: The proposed framework, which combines several advanced methods including also three CNNs, works fully automatically even with incomplete spine scans and with distorted pathological cases. The achieved results allow including the presented algorithms as the first phase to the fully automated computer-aided diagnosis (CAD) system for automatic spine-bone lesion analysis in oncological patients.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025294
003      
CZ-PrNML
005      
20250507102640.0
007      
ta
008      
201125e20190928ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2019.105081 $2 doi
035    __
$a (PubMed)31600607
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Jakubicek, Roman $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic. Electronic address: jakubicek@feec.vutbr.cz.
245    10
$a Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines / $c R. Jakubicek, J. Chmelik, J. Jan, P. Ourednicek, L. Lambert, G. Gavelli,
520    9_
$a BACKGROUND AND OBJECTIVE: We present a fully automatic system based on learning approaches, which aims to localization and identification (labeling) of vertebrae in 3D computed tomography (CT) scans of possibly incomplete spines in patients with bone metastases and vertebral compressions. METHODS: The framework combines a set of 3D algorithms for i) spine detection using a convolution neural network (CNN) ii) spinal cord tracking based on combination of a CNN and a novel growing sphere method with a population optimization, iii) intervertebral discs localization using a novel approach of spatially variant filtering of intensity profiles and iv) vertebra labeling using a CNN-based classification combined with global dynamic optimization. RESULTS: The proposed algorithm has been validated in testing databases, including also a publicly available dataset. The mean error of intervertebral discs localization is 4.4 mm, and for vertebra labeling, the average rate of correctly identified vertebrae is 87.1%, which can be considered a good result with respect to the large share of highly distorted spines and incomplete spine scans. CONCLUSIONS: The proposed framework, which combines several advanced methods including also three CNNs, works fully automatically even with incomplete spine scans and with distorted pathological cases. The achieved results allow including the presented algorithms as the first phase to the fully automated computer-aided diagnosis (CAD) system for automatic spine-bone lesion analysis in oncological patients.
650    _2
$a algoritmy $7 D000465
650    _2
$a nádory kostí $x diagnostické zobrazování $x patologie $7 D001859
650    _2
$a databáze faktografické $7 D016208
650    _2
$a diagnóza počítačová $7 D003936
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a meziobratlová ploténka $x diagnostické zobrazování $x patologie $7 D007403
650    _2
$a metastázy nádorů $7 D009362
650    _2
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a software $7 D012984
650    _2
$a nemoci páteře $x diagnostické zobrazování $7 D013122
650    _2
$a páteř $x diagnostické zobrazování $x patologie $7 D013131
650    12
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chmelík, Jiří $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic. $7 xx0331819
700    1_
$a Jan, Jiri $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic.
700    1_
$a Ourednicek, Petr $u St. Anne's University Hospital, Brno, Czech Republic; Philips Healthcare, Eindhoven, Netherlands.
700    1_
$a Lambert, Lukas $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia.
700    1_
$a Gavelli, Giampaolo $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy.
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 183 (20190928), s. 105081
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31600607 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20250507102638 $b ABA008
999    __
$a ok $b bmc $g 1599439 $s 1115980
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 183 $c - $d 105081 $e 20190928 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...