-
Je něco špatně v tomto záznamu ?
Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines
R. Jakubicek, J. Chmelik, J. Jan, P. Ourednicek, L. Lambert, G. Gavelli,
Jazyk angličtina Země Irsko
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- diagnóza počítačová MeSH
- lidé MeSH
- metastázy nádorů MeSH
- meziobratlová ploténka diagnostické zobrazování patologie MeSH
- nádory kostí diagnostické zobrazování patologie MeSH
- nemoci páteře diagnostické zobrazování MeSH
- neuronové sítě MeSH
- páteř diagnostické zobrazování patologie MeSH
- počítačová rentgenová tomografie * MeSH
- počítačové zpracování obrazu MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované MeSH
- software MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVE: We present a fully automatic system based on learning approaches, which aims to localization and identification (labeling) of vertebrae in 3D computed tomography (CT) scans of possibly incomplete spines in patients with bone metastases and vertebral compressions. METHODS: The framework combines a set of 3D algorithms for i) spine detection using a convolution neural network (CNN) ii) spinal cord tracking based on combination of a CNN and a novel growing sphere method with a population optimization, iii) intervertebral discs localization using a novel approach of spatially variant filtering of intensity profiles and iv) vertebra labeling using a CNN-based classification combined with global dynamic optimization. RESULTS: The proposed algorithm has been validated in testing databases, including also a publicly available dataset. The mean error of intervertebral discs localization is 4.4 mm, and for vertebra labeling, the average rate of correctly identified vertebrae is 87.1%, which can be considered a good result with respect to the large share of highly distorted spines and incomplete spine scans. CONCLUSIONS: The proposed framework, which combines several advanced methods including also three CNNs, works fully automatically even with incomplete spine scans and with distorted pathological cases. The achieved results allow including the presented algorithms as the first phase to the fully automated computer-aided diagnosis (CAD) system for automatic spine-bone lesion analysis in oncological patients.
Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori Meldola Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025294
- 003
- CZ-PrNML
- 005
- 20250507102640.0
- 007
- ta
- 008
- 201125e20190928ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2019.105081 $2 doi
- 035 __
- $a (PubMed)31600607
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Jakubicek, Roman $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic. Electronic address: jakubicek@feec.vutbr.cz.
- 245 10
- $a Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines / $c R. Jakubicek, J. Chmelik, J. Jan, P. Ourednicek, L. Lambert, G. Gavelli,
- 520 9_
- $a BACKGROUND AND OBJECTIVE: We present a fully automatic system based on learning approaches, which aims to localization and identification (labeling) of vertebrae in 3D computed tomography (CT) scans of possibly incomplete spines in patients with bone metastases and vertebral compressions. METHODS: The framework combines a set of 3D algorithms for i) spine detection using a convolution neural network (CNN) ii) spinal cord tracking based on combination of a CNN and a novel growing sphere method with a population optimization, iii) intervertebral discs localization using a novel approach of spatially variant filtering of intensity profiles and iv) vertebra labeling using a CNN-based classification combined with global dynamic optimization. RESULTS: The proposed algorithm has been validated in testing databases, including also a publicly available dataset. The mean error of intervertebral discs localization is 4.4 mm, and for vertebra labeling, the average rate of correctly identified vertebrae is 87.1%, which can be considered a good result with respect to the large share of highly distorted spines and incomplete spine scans. CONCLUSIONS: The proposed framework, which combines several advanced methods including also three CNNs, works fully automatically even with incomplete spine scans and with distorted pathological cases. The achieved results allow including the presented algorithms as the first phase to the fully automated computer-aided diagnosis (CAD) system for automatic spine-bone lesion analysis in oncological patients.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a nádory kostí $x diagnostické zobrazování $x patologie $7 D001859
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a diagnóza počítačová $7 D003936
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a meziobratlová ploténka $x diagnostické zobrazování $x patologie $7 D007403
- 650 _2
- $a metastázy nádorů $7 D009362
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a software $7 D012984
- 650 _2
- $a nemoci páteře $x diagnostické zobrazování $7 D013122
- 650 _2
- $a páteř $x diagnostické zobrazování $x patologie $7 D013131
- 650 12
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chmelík, Jiří $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic. $7 xx0331819
- 700 1_
- $a Jan, Jiri $u Brno University of Technology, Department of Biomedical Engineering, Technicka 12, Brno, 612 00, Czech Republic.
- 700 1_
- $a Ourednicek, Petr $u St. Anne's University Hospital, Brno, Czech Republic; Philips Healthcare, Eindhoven, Netherlands.
- 700 1_
- $a Lambert, Lukas $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia.
- 700 1_
- $a Gavelli, Giampaolo $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy.
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 183 (20190928), s. 105081
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31600607 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20250507102638 $b ABA008
- 999 __
- $a ok $b bmc $g 1599439 $s 1115980
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 183 $c - $d 105081 $e 20190928 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- LZP __
- $a Pubmed-20201125