-
Something wrong with this record ?
Isolation and 3D Collagen Sandwich Culture of Primary Mouse Hepatocytes to Study the Role of Cytoskeleton in Bile Canalicular Formation In Vitro
K. Korelova, M. Jirouskova, L. Sarnova, M. Gregor,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Video-Audio Media
Grant support
NV17-31538A
MZ0
CEP Register
PubMed
31904017
DOI
10.3791/60507
Knihovny.cz E-resources
- MeSH
- Actins metabolism MeSH
- Biological Transport MeSH
- Cell Membrane metabolism MeSH
- Cytoskeleton metabolism MeSH
- Extracellular Matrix metabolism MeSH
- Hepatocytes metabolism pathology MeSH
- Collagen metabolism MeSH
- Cells, Cultured MeSH
- Actin Cytoskeleton MeSH
- Microtubules metabolism MeSH
- Mice MeSH
- Bile metabolism MeSH
- Bile Canaliculi metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hepatocytes are the central cells of the liver responsible for its metabolic function. As such, they form a uniquely polarized epithelium, in which two or more hepatocytes contribute apical membranes to form a bile canalicular network through which bile is secreted. Hepatocyte polarization is essential for correct canalicular formation and depends on interactions between the hepatocyte cytoskeleton, cell-cell contacts, and the extracellular matrix. In vitro studies of hepatocyte cytoskeleton involvement in canaliculi formation and its response to pathological situations are handicapped by the lack of cell culture, which would closely resemble the canaliculi network structure in vivo. Described here is a protocol for the isolation of mouse hepatocytes from the adult mouse liver using a modified collagenase perfusion technique. Also described is the production of culture in a 3D collagen sandwich setting, which is used for immunolabeling of cytoskeletal components to study bile canalicular formation and its response to treatments in vitro. It is shown that hepatocyte 3D collagen sandwich cultures respond to treatments with toxins (ethanol) or actin cytoskeleton altering drugs (e.g., blebbistatin) and serve as a valuable tool for in vitro studies of bile canaliculi formation and function.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025390
- 003
- CZ-PrNML
- 005
- 20201222155154.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3791/60507 $2 doi
- 035 __
- $a (PubMed)31904017
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Korelova, Katerina $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences.
- 245 10
- $a Isolation and 3D Collagen Sandwich Culture of Primary Mouse Hepatocytes to Study the Role of Cytoskeleton in Bile Canalicular Formation In Vitro / $c K. Korelova, M. Jirouskova, L. Sarnova, M. Gregor,
- 520 9_
- $a Hepatocytes are the central cells of the liver responsible for its metabolic function. As such, they form a uniquely polarized epithelium, in which two or more hepatocytes contribute apical membranes to form a bile canalicular network through which bile is secreted. Hepatocyte polarization is essential for correct canalicular formation and depends on interactions between the hepatocyte cytoskeleton, cell-cell contacts, and the extracellular matrix. In vitro studies of hepatocyte cytoskeleton involvement in canaliculi formation and its response to pathological situations are handicapped by the lack of cell culture, which would closely resemble the canaliculi network structure in vivo. Described here is a protocol for the isolation of mouse hepatocytes from the adult mouse liver using a modified collagenase perfusion technique. Also described is the production of culture in a 3D collagen sandwich setting, which is used for immunolabeling of cytoskeletal components to study bile canalicular formation and its response to treatments in vitro. It is shown that hepatocyte 3D collagen sandwich cultures respond to treatments with toxins (ethanol) or actin cytoskeleton altering drugs (e.g., blebbistatin) and serve as a valuable tool for in vitro studies of bile canaliculi formation and function.
- 650 _2
- $a mikrofilamenta $7 D008841
- 650 _2
- $a aktiny $x metabolismus $7 D000199
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a žluč $x metabolismus $7 D001646
- 650 _2
- $a žlučové kanálky $x metabolismus $x patologie $7 D001648
- 650 _2
- $a biologický transport $7 D001692
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a kolagen $x metabolismus $7 D003094
- 650 _2
- $a cytoskelet $x metabolismus $7 D003599
- 650 _2
- $a extracelulární matrix $x metabolismus $7 D005109
- 650 _2
- $a hepatocyty $x metabolismus $x patologie $7 D022781
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mikrotubuly $x metabolismus $7 D008870
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a audiovizuální média $7 D059040
- 700 1_
- $a Jirouskova, Marketa $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences.
- 700 1_
- $a Sarnova, Lenka $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences.
- 700 1_
- $a Gregor, Martin $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences; martin.gregor@img.cas.cz.
- 773 0_
- $w MED00190569 $t Journal of visualized experiments : JoVE $x 1940-087X $g č. 154 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31904017 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155150 $b ABA008
- 999 __
- $a ok $b bmc $g 1599535 $s 1116076
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $c 154 $e 20191220 $i 1940-087X $m Journal of visualized experiments $n J. vis. exp. $x MED00190569
- GRA __
- $a NV17-31538A $p MZ0
- LZP __
- $a Pubmed-20201125