-
Je něco špatně v tomto záznamu ?
SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data
I. Vogel, RC. Blanshard, ER. Hoffmann,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1996 do Před 1 rokem
PubMed Central
od 2007
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1998-01-01
Oxford Journals Open Access Collection
od 1985-01-01 do 2022-09-30
Oxford Journals Open Access Collection
od 1985-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
- MeSH
- Bayesova věta MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- normální rozdělení MeSH
- sekvenování celého genomu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOTIVATION: Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. RESULTS: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics. AVAILABILITY AND IMPLEMENTATION: The implementation of SureTypeSC in Python and sample data are available in the GitHub repository: https://github.com/puko818/SureTypeSC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025421
- 003
- CZ-PrNML
- 005
- 20201222153911.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/bioinformatics/btz412 $2 doi
- 035 __
- $a (PubMed)31116387
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vogel, Ivan $u DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark. Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
- 245 10
- $a SureTypeSC-a Random Forest and Gaussian mixture predictor of high confidence genotypes in single-cell data / $c I. Vogel, RC. Blanshard, ER. Hoffmann,
- 520 9_
- $a MOTIVATION: Accurate genotyping of DNA from a single cell is required for applications such as de novo mutation detection, linkage analysis and lineage tracing. However, achieving high precision genotyping in the single-cell environment is challenging due to the errors caused by whole-genome amplification. Two factors make genotyping from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive single-cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect noise from the whole-genome amplification step. Algorithms designed for bulk DNA genotyping cause significant data loss when used for single-cell applications. RESULTS: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole-genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is generated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC-a two-stage machine learning algorithm that filters a substantial part of the noise, thereby retaining the majority of the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particular single-cell genotype using Bayesian statistics. AVAILABILITY AND IMPLEMENTATION: The implementation of SureTypeSC in Python and sample data are available in the GitHub repository: https://github.com/puko818/SureTypeSC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- 650 _2
- $a Bayesova věta $7 D001499
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a normální rozdělení $7 D016011
- 650 12
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a sekvenování celého genomu $7 D000073336
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Blanshard, Robert C $u Illumina Cambridge Ltd., Fulbourn, UK. Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- 700 1_
- $a Hoffmann, Eva R $u DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark. Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- 773 0_
- $w MED00008115 $t Bioinformatics (Oxford, England) $x 1367-4811 $g Roč. 35, č. 23 (2019), s. 5055-5062
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31116387 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153907 $b ABA008
- 999 __
- $a ok $b bmc $g 1599566 $s 1116107
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 35 $c 23 $d 5055-5062 $e 20191201 $i 1367-4811 $m Bioinformatics $n Bioinformatics $x MED00008115
- LZP __
- $a Pubmed-20201125