-
Je něco špatně v tomto záznamu ?
Associations of built environment and proximity of food outlets with weight status: Analysis from 14 cities in 10 countries
T. Cochrane, Y. Yu, R. Davey, E. Cerin, KL. Cain, TL. Conway, J. Kerr, LD. Frank, JE. Chapman, MA. Adams, D. Macfarlane, D. Van Dyck, PC. Lai, OL. Sarmiento, J. Troelsen, D. Salvo, R. Reis, J. Mitáš, G. Schofield, N. Owen, JF. Sallis,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA127296
NCI NIH HHS - United States
R01 HL067350
NHLBI NIH HHS - United States
R01 CA127296
NCI NIH HHS - United States
G0501287
Medical Research Council - United Kingdom
P30 DK092950
NIDDK NIH HHS - United States
- MeSH
- charakteristiky bydlení MeSH
- doprava statistika a číselné údaje MeSH
- dospělí MeSH
- geografické informační systémy statistika a číselné údaje MeSH
- index tělesné hmotnosti * MeSH
- internacionalita * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita * MeSH
- potraviny * MeSH
- průřezové studie MeSH
- restaurace * MeSH
- sexuální faktory MeSH
- velkoměsta MeSH
- vytvořené prostředí * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- velkoměsta MeSH
The study aimed to examine associations of neighborhood built environments and proximity of food outlets (BE measures) with body weight status using pooled data from an international study (IPEN Adult). Objective BE measures were calculated using geographic information systems for 10,008 participants (4463 male, 45%) aged 16-66 years in 14 cities. Participants self-reported proximity to three types of food outlets. Outcomes were body mass index (BMI) and overweight/obesity status. Male and female weight status associations with BE measures were estimated by generalized additive mixed models. Proportion (95% CI) of overweight (BMI 25 to <30) ranged from 16.6% (13.1, 19.8) to 41.1% (37.3, 44.7), and obesity (BMI ≥ 30) from 2.9% (1.3, 4.4) to 31.3% (27.7, 34.7), with Hong Kong being the lowest and Cuernavaca, Mexico highest for both proportions. Results differed by sex. Greater street intersection density, public transport density and perceived proximity to restaurants (males) were associated with lower odds of overweight/obesity (BMI ≥ 25). Proximity to public transport stops (females) was associated with higher odds of overweight/obesity. Composite BE measures were more strongly related to BMI and overweight/obesity status than single variables among men but not women. One standard deviation improvement in the composite measures of BE was associated with small reductions of 0.1-0.5% in BMI but meaningful reductions of 2.5-5.3% in the odds of overweight/obesity. Effects were linear and generalizable across cities. Neighborhoods designed to support public transport, with food outlets within walking distance, may contribute to global obesity control.
Behavioural Epidemiology Laboratory Baker Heart and Diabetes Institute Melbourne Australia
Centre for Research and Action in Public Health University of Canberra Canberra Australia
Centre for Sports and Exercise University of Hong Kong Hong Kong China
College of Health Solutions Arizona State University Phoenix USA
Department of Geography University of Hong Kong Hong Kong China
Department of Movement and Sports Sciences Ghent University Belgium
Family Medicine and Public Health University of California San Diego USA
Graduate Program in Urban Management Curitiba Brazil
Human Potential Centre Auckland University of Technology New Zealand
Institute of Active Lifestyle Faculty of Physical Culture Palacký University Olomouc Czech Republic
Institute of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
Mary MacKillop Institute for Health Research Australian Catholic University Melbourne Australia
Prevention Research Center in St Louis Brown School Washington University in St Louis St Louis USA
Research Foundation Flanders Belgium
School of Community and Regional Planning University of British Columbia Vancouver Canada
School of Medicine Universidad de los Andes Bogota Colombia
School of Public Health University of Hong Kong Hong Kong China
Therapeutic Goods Administration Department of Health Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025462
- 003
- CZ-PrNML
- 005
- 20201222155215.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ypmed.2019.105874 $2 doi
- 035 __
- $a (PubMed)31654731
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cochrane, Thomas $u Centre for Research & Action in Public Health, University of Canberra, Canberra, Australia. Electronic address: Tom.Cochrane@canberra.edu.au.
- 245 10
- $a Associations of built environment and proximity of food outlets with weight status: Analysis from 14 cities in 10 countries / $c T. Cochrane, Y. Yu, R. Davey, E. Cerin, KL. Cain, TL. Conway, J. Kerr, LD. Frank, JE. Chapman, MA. Adams, D. Macfarlane, D. Van Dyck, PC. Lai, OL. Sarmiento, J. Troelsen, D. Salvo, R. Reis, J. Mitáš, G. Schofield, N. Owen, JF. Sallis,
- 520 9_
- $a The study aimed to examine associations of neighborhood built environments and proximity of food outlets (BE measures) with body weight status using pooled data from an international study (IPEN Adult). Objective BE measures were calculated using geographic information systems for 10,008 participants (4463 male, 45%) aged 16-66 years in 14 cities. Participants self-reported proximity to three types of food outlets. Outcomes were body mass index (BMI) and overweight/obesity status. Male and female weight status associations with BE measures were estimated by generalized additive mixed models. Proportion (95% CI) of overweight (BMI 25 to <30) ranged from 16.6% (13.1, 19.8) to 41.1% (37.3, 44.7), and obesity (BMI ≥ 30) from 2.9% (1.3, 4.4) to 31.3% (27.7, 34.7), with Hong Kong being the lowest and Cuernavaca, Mexico highest for both proportions. Results differed by sex. Greater street intersection density, public transport density and perceived proximity to restaurants (males) were associated with lower odds of overweight/obesity (BMI ≥ 25). Proximity to public transport stops (females) was associated with higher odds of overweight/obesity. Composite BE measures were more strongly related to BMI and overweight/obesity status than single variables among men but not women. One standard deviation improvement in the composite measures of BE was associated with small reductions of 0.1-0.5% in BMI but meaningful reductions of 2.5-5.3% in the odds of overweight/obesity. Effects were linear and generalizable across cities. Neighborhoods designed to support public transport, with food outlets within walking distance, may contribute to global obesity control.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a index tělesné hmotnosti $7 D015992
- 650 12
- $a vytvořené prostředí $7 D000076624
- 650 _2
- $a průřezové studie $7 D003430
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a potraviny $7 D005502
- 650 _2
- $a geografické informační systémy $x statistika a číselné údaje $7 D040362
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a internacionalita $7 D038622
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a obezita $7 D009765
- 650 _2
- $a charakteristiky bydlení $7 D012111
- 650 12
- $a restaurace $7 D012147
- 650 _2
- $a sexuální faktory $7 D012737
- 650 _2
- $a doprava $x statistika a číselné údaje $7 D014186
- 650 _2
- $a mladý dospělý $7 D055815
- 651 _2
- $a velkoměsta $7 D002947
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Yu, Yan $u Centre for Research & Action in Public Health, University of Canberra, Canberra, Australia; Therapeutic Goods Administration, Department of Health, Australia. Electronic address: Yan.Yu@health.edu.au.
- 700 1_
- $a Davey, Rachel $u Centre for Research & Action in Public Health, University of Canberra, Canberra, Australia. Electronic address: rachel.davey@canberra.edu.au.
- 700 1_
- $a Cerin, Ester $u Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; School of Public Health, University of Hong Kong, Hong Kong, China. Electronic address: Ester.Cerin@acu.edu.au.
- 700 1_
- $a Cain, Kelli L $u Family Medicine and Public Health, University of California San Diego, USA; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia. Electronic address: kcain@ucsd.edu.
- 700 1_
- $a Conway, Terry L $u Family Medicine and Public Health, University of California San Diego, USA; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia. Electronic address: tlconway@ucsd.edu.
- 700 1_
- $a Kerr, Jacqueline $u Family Medicine and Public Health, University of California San Diego, USA. Electronic address: jkerr@grantdoctor.org.
- 700 1_
- $a Frank, Lawrence D $u School of Community and Regional Planning, University of British Columbia, Vancouver, Canada; Urban Design 4 Health, Rochester, New York, USA. Electronic address: ldfrank@ud4h.com.
- 700 1_
- $a Chapman, James E $u Urban Design 4 Health, Rochester, New York, USA. Electronic address: jchapman@urbandesign4health.com.
- 700 1_
- $a Adams, Marc A $u College of Health Solutions, Arizona State University, Phoenix, USA. Electronic address: marc.adams@asu.edu.
- 700 1_
- $a Macfarlane, Duncan $u Centre for Sports and Exercise, University of Hong Kong, Hong Kong, China. Electronic address: djmac@hku.hk.
- 700 1_
- $a Van Dyck, Delfien $u Department of Movement and Sports Sciences, Ghent University, Belgium; Research Foundation Flanders, Belgium. Electronic address: delfien.vandyck@ugent.be.
- 700 1_
- $a Lai, Poh-Chin $u Department of Geography, University of Hong Kong, Hong Kong, China. Electronic address: pclai@hku.hk.
- 700 1_
- $a Sarmiento, Olga L $u School of Medicine, Universidad de los Andes, Bogota, Colombia. Electronic address: osarmien@uniandes.edu.co.
- 700 1_
- $a Troelsen, Jens $u Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark. Electronic address: JTroelsen@health.sdu.dk.
- 700 1_
- $a Salvo, Deborah $u Prevention Research Center in St. Louis & Center for Diabetes Translation Research, Brown School, Washington University in St. Louis, USA; Center for Nutrition and Health Research, National Institute of Public Health of Mexico, Cuernavaca, Mexico. Electronic address: dsalvo@wustl.edu.
- 700 1_
- $a Reis, Rodrigo $u Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, St. Louis, USA; Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil. Electronic address: reis.rodrigo@wustl.edu.
- 700 1_
- $a Mitáš, Josef $u Institute of Active Lifestyle, Faculty of Physical Culture, Palacký University, Olomouc, Czech Republic. Electronic address: josef.mitas@upol.cz.
- 700 1_
- $a Schofield, Grant $u Human Potential Centre, Auckland University of Technology, New Zealand. Electronic address: grant.schofield@aut.ac.nz.
- 700 1_
- $a Owen, Neville $u Behavioural Epidemiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. Electronic address: Neville.Owen@baker.edu.au.
- 700 1_
- $a Sallis, James F $u Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Family Medicine and Public Health, University of California San Diego, USA. Electronic address: jsallis@ucsd.edu.
- 773 0_
- $w MED00003886 $t Preventive medicine $x 1096-0260 $g Roč. 129, č. - (2019), s. 105874
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31654731 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155211 $b ABA008
- 999 __
- $a ok $b bmc $g 1599607 $s 1116148
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 129 $c - $d 105874 $e 20191022 $i 1096-0260 $m Preventive medicine $n Prev Med $x MED00003886
- GRA __
- $a R01 CA127296 $p NCI NIH HHS $2 United States
- GRA __
- $a R01 HL067350 $p NHLBI NIH HHS $2 United States
- GRA __
- $a R01 CA127296 $p NCI NIH HHS $2 United States
- GRA __
- $a G0501287 $p Medical Research Council $2 United Kingdom
- GRA __
- $a P30 DK092950 $p NIDDK NIH HHS $2 United States
- LZP __
- $a Pubmed-20201125