• Je něco špatně v tomto záznamu ?

Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies

A. Bucek, J. Šobotník, S. He, M. Shi, DP. McMahon, EC. Holmes, Y. Roisin, N. Lo, T. Bourguignon,

. 2019 ; 29 (21) : 3728-3734.e4. [pub] 20191017

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025508
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1995-01-01 do Před 1 rokem
Free Medical Journals od 1995 do Před 1 rokem
Elsevier Open Access Journals od 1995-01-01 do 2023-06-19
Elsevier Open Archive Journals od 1995-01-01 do Před 1 rokem

Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025508
003      
CZ-PrNML
005      
20201222153933.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2019.08.076 $2 doi
035    __
$a (PubMed)31630948
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Bucek, Ales $u Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, 16521 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Repubic. Electronic address: bucek.ales@gmail.com.
245    10
$a Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies / $c A. Bucek, J. Šobotník, S. He, M. Shi, DP. McMahon, EC. Holmes, Y. Roisin, N. Lo, T. Bourguignon,
520    9_
$a Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.
650    _2
$a zvířata $7 D000818
650    12
$a biologická evoluce $7 D005075
650    _2
$a hmyzí geny $7 D017344
650    _2
$a Isoptera $x genetika $x fyziologie $7 D020049
650    _2
$a fylogeneze $7 D010802
650    12
$a symbióza $7 D013559
650    _2
$a Termitomyces $x fyziologie $7 D055434
650    12
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Šobotník, Jan $u Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, 16521 Prague, Czech Republic.
700    1_
$a He, Shulin $u Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, 16521 Prague, Czech Republic; Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany.
700    1_
$a Shi, Mang $u Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
700    1_
$a McMahon, Dino P $u Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
700    1_
$a Holmes, Edward C $u Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
700    1_
$a Roisin, Yves $u Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium.
700    1_
$a Lo, Nathan $u School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
700    1_
$a Bourguignon, Thomas $u Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, 16521 Prague, Czech Republic. Electronic address: Thomas.bourguignon@oist.jp.
773    0_
$w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 29, č. 21 (2019), s. 3728-3734.e4
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31630948 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222153928 $b ABA008
999    __
$a ok $b bmc $g 1599653 $s 1116194
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 29 $c 21 $d 3728-3734.e4 $e 20191017 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...