• Je něco špatně v tomto záznamu ?

The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro

M. Sborchia, EG. De Prez, MH. Antoine, L. Bienfait, R. Indra, G. Valbuena, DH. Phillips, JL. Nortier, M. Stiborová, HC. Keun, VM. Arlt,

. 2019 ; 93 (11) : 3345-3366. [pub] 20191010

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025518

Grantová podpora
A14329 Cancer Research UK - United Kingdom
PhD Studentship MRC-PHE Centre for Environment & Health - International
C313/A14329 Cancer Research UK - United Kingdom

E-zdroje Online Plný text

NLK ProQuest Central od 2002-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 2002-01-01 do Před 1 rokem

Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025518
003      
CZ-PrNML
005      
20201222160246.0
007      
ta
008      
201125s2019 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00204-019-02578-4 $2 doi
035    __
$a (PubMed)31602497
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Sborchia, Mateja $u Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
245    14
$a The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro / $c M. Sborchia, EG. De Prez, MH. Antoine, L. Bienfait, R. Indra, G. Valbuena, DH. Phillips, JL. Nortier, M. Stiborová, HC. Keun, VM. Arlt,
520    9_
$a Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.
650    _2
$a zvířata $7 D000818
650    _2
$a kyseliny aristolochové $x metabolismus $x toxicita $7 D034341
650    _2
$a kultivované buňky $7 D002478
650    _2
$a cytochrom P-450 CYP1A1 $x genetika $7 D019363
650    12
$a poškození DNA $7 D004249
650    _2
$a fibroblasty $x účinky léků $x metabolismus $x patologie $7 D005347
650    _2
$a exprese genu $x účinky léků $7 D015870
650    _2
$a vyšetření funkce ledvin $7 D007677
650    _2
$a proximální tubuly ledvin $x účinky léků $x metabolismus $x patologie $7 D007687
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši knockoutované $7 D018345
650    _2
$a mutageny $x metabolismus $x toxicita $7 D009153
650    _2
$a NAD(P)H dehydrogenasa (chinon) $x genetika $7 D016660
650    _2
$a nádorový supresorový protein p53 $x genetika $7 D016159
655    _2
$a časopisecké články $7 D016428
700    1_
$a De Prez, Eric G $u Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium.
700    1_
$a Antoine, Marie-Hélène $u Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium.
700    1_
$a Bienfait, Lucie $u Department of Pathology, Erasme University Hospital, 1070, Brussels, Belgium.
700    1_
$a Indra, Radek $u Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic.
700    1_
$a Valbuena, Gabriel $u Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
700    1_
$a Phillips, David H $u Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
700    1_
$a Nortier, Joëlle L $u Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium.
700    1_
$a Stiborová, Marie $u Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic.
700    1_
$a Keun, Hector C $u Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
700    1_
$a Arlt, Volker M $u Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK. volker.arlt@kcl.ac.uk.
773    0_
$w MED00009265 $t Archives of toxicology $x 1432-0738 $g Roč. 93, č. 11 (2019), s. 3345-3366
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31602497 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222160242 $b ABA008
999    __
$a ok $b bmc $g 1599663 $s 1116204
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 93 $c 11 $d 3345-3366 $e 20191010 $i 1432-0738 $m Archives of toxicology $n Arch Toxicol $x MED00009265
GRA    __
$a A14329 $p Cancer Research UK $2 United Kingdom
GRA    __
$a PhD Studentship $p MRC-PHE Centre for Environment & Health $2 International
GRA    __
$a C313/A14329 $p Cancer Research UK $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...