Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering

M. Dziadek, R. Kudlackova, A. Zima, A. Slosarczyk, M. Ziabka, P. Jelen, S. Shkarina, A. Cecilia, M. Zuber, T. Baumbach, MA. Surmeneva, RA. Surmenev, L. Bacakova, K. Cholewa-Kowalska, TEL. Douglas,

. 2019 ; 107 (11) : 2479-2491. [pub] 20190722

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025539

Grantová podpora
Foundation for Polish Science - International
P108/12/G108 Grant Agency of the Czech Republic ("Center of Excellence") - International
#20.1907.2018 Grant of the President of Russian Federation for young researchers - International
2017/27/B/ST8/01173 National Science Centre, Poland - International
11.11.160.365 Polish Ministry for Science and Higher Education - International
Research Foundation Flanders - International
Tomsk Polytechnic University Competitiveness Enhancement Program grant - International

The present work focuses on the development of novel multicomponent organic-inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt%) was proposed. The results showed that α-TCP underwent incomplete transformation to calcium-deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30-70 wt% α-TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α-TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14-day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast-like MG-63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025539
003      
CZ-PrNML
005      
20201222155243.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.a.36754 $2 doi
035    __
$a (PubMed)31298796
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Dziadek, Michal $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland. Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland. Engineering Department, Lancaster University, Lancaster, UK.
245    10
$a Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering / $c M. Dziadek, R. Kudlackova, A. Zima, A. Slosarczyk, M. Ziabka, P. Jelen, S. Shkarina, A. Cecilia, M. Zuber, T. Baumbach, MA. Surmeneva, RA. Surmenev, L. Bacakova, K. Cholewa-Kowalska, TEL. Douglas,
520    9_
$a The present work focuses on the development of novel multicomponent organic-inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt%) was proposed. The results showed that α-TCP underwent incomplete transformation to calcium-deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30-70 wt% α-TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α-TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14-day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast-like MG-63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications.
650    _2
$a kosti a kostní tkáň $x cytologie $x metabolismus $7 D001842
650    12
$a fosforečnany vápenaté $x chemie $x farmakologie $7 D002130
650    _2
$a buněčné linie $7 D002460
650    12
$a želatina $x chemie $x farmakologie $7 D005780
650    _2
$a lidé $7 D006801
650    12
$a hydrogely $x chemie $x farmakologie $7 D020100
650    _2
$a osteoblasty $x cytologie $x metabolismus $7 D010006
650    12
$a tkáňové inženýrství $7 D023822
650    12
$a syrovátkové proteiny $x chemie $x farmakologie $7 D000067816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kudlackova, Radmila $u Engineering Department, Lancaster University, Lancaster, UK. Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Zima, Aneta $u Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Slosarczyk, Anna $u Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Ziabka, Magdalena $u Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Jelen, Piotr $u Department of Silicate Chemistry and Macromolecular Compounds, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Shkarina, Svetlana $u Research Center Physical Materials Science and Composite Materials, National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
700    1_
$a Cecilia, Angelica $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
700    1_
$a Zuber, Marcus $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany. Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
700    1_
$a Baumbach, Tilo $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany. Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
700    1_
$a Surmeneva, Maria A $u Research Center Physical Materials Science and Composite Materials, National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
700    1_
$a Surmenev, Roman A $u Research Center Physical Materials Science and Composite Materials, National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
700    1_
$a Bacakova, Lucie $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Cholewa-Kowalska, Katarzyna $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Douglas, Timothy E L $u Engineering Department, Lancaster University, Lancaster, UK. Materials Science Institute (MSI), Lancaster University, Lancaster, UK.
773    0_
$w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 107, č. 11 (2019), s. 2479-2491
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31298796 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155239 $b ABA008
999    __
$a ok $b bmc $g 1599684 $s 1116225
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 107 $c 11 $d 2479-2491 $e 20190722 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
GRA    __
$p Foundation for Polish Science $2 International
GRA    __
$a P108/12/G108 $p Grant Agency of the Czech Republic ("Center of Excellence") $2 International
GRA    __
$a #20.1907.2018 $p Grant of the President of Russian Federation for young researchers $2 International
GRA    __
$a 2017/27/B/ST8/01173 $p National Science Centre, Poland $2 International
GRA    __
$a 11.11.160.365 $p Polish Ministry for Science and Higher Education $2 International
GRA    __
$p Research Foundation Flanders $2 International
GRA    __
$p Tomsk Polytechnic University Competitiveness Enhancement Program grant $2 International
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...