• This record comes from PubMed

Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering

. 2019 Nov ; 107 (11) : 2479-2491. [epub] 20190722

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Foundation for Polish Science - International
P108/12/G108 Grant Agency of the Czech Republic ("Center of Excellence") - International
#20.1907.2018 Grant of the President of Russian Federation for young researchers - International
2017/27/B/ST8/01173 National Science Centre, Poland - International
11.11.160.365 Polish Ministry for Science and Higher Education - International
Research Foundation Flanders - International
Tomsk Polytechnic University Competitiveness Enhancement Program grant - International

The present work focuses on the development of novel multicomponent organic-inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt%) was proposed. The results showed that α-TCP underwent incomplete transformation to calcium-deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30-70 wt% α-TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α-TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14-day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast-like MG-63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications.

See more in PubMed

Carrodeguas, R. G., & De Aza, S. (2011). α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 7, 3536-3546.

Chang, M. C., Ko, C. C., & Douglas, W. H. (2003). Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 24, 2853-2862.

Chen, C. W., Oakes, C. S., Byrappa, K., Riman, R. E., Brown, K., TenHuisen, K. S., & Janas, V. F. (2004). Synthesis, characterization, and dispersion properties of hydroxyapatite prepared by mechanochemical-hydrothermal methods. Journal of Materials Chemistry, 14, 2425-2432.

Christel, T., Kuhlmann, M., Vorndran, E., Groll, J., & Gbureck, U. (2013). Dual setting α-tricalcium phosphate cements. Journal of Materials Science: Materials in Medicine, 24, 573-581.

Czechowska, J., Zima, A., Paszkiewicz, Z., Lis, J., & Ślósarczyk, A. (2014). Physicochemical properties and biomimetic behaviour of α-TCP-chitosan based materials. Ceramic Interfaces, 40, 5523-5532.

de Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., & Sato, H. H. (2017). Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure, 14, 17-29.

Douglas, T. E. L., Schietse, J., Zima, A., Gorodzha, S., Parakhonskiy, B. V., KhaleNkow, D., … Skirtach, A. G. (2018). Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization. Journal of Biomedical Materials Research, Part A, 106, 822-828.

Douglas, T. E. L., Vandrovcová, M., Kročilová, N., Keppler, J. K., Zárubová, J., Skirtach, A. G., & Bačáková, L. (2017). Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. Journal of Dairy Science, 101, 28-36.

Ehara, A., Ogata, K., Imazato, S., Ebisu, S., Nakano, T., & Umakoshi, Y. (2003). Effects of α-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization. Biomaterials, 24, 831-836.

Gaharwar, A. K., Dammu, S. A., Canter, J. M., Wu, C. J., & Schmidt, G. (2011). Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly[ethylene glycol] and hydroxyapatite nanoparticles. Biomacromolecules, 12, 1641-1650.

Gao, X., Guo, G., Deng, X., Fan, R., Wang, Y., Chen, H., & Fan, M. (2014). Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials. International Journal of Nanomedicine, 9, 615-626.

Gilbert, V., Rouabhia, M., Wang, H., Arnould, A. L., Remondetto, G., & Subirade, M. (2005). Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures. Biomaterials, 26, 7471-7480.

Goto, T., Kim, I. Y., Kikuta, K., & Ohtsuki, C. (2012). Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly(vinyl alcohol) hydrogel. Materials Science and Engineering: C, 32, 397-403.

Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering, 83, 31-40.

Guo, H., Su, J., Wei, J., Kong, H., & Liu, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 5, 268-278.

Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., & Gibson, L. J. (2010). Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. Journal of Biomedical Materials Research, Part A, 92, 1078-1093.

Huang, C. Y., Hu, K. H., & Wei, Z. H. (2016). Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Scientific Reports, 6, 37960.

Jia, X., & Kiick, K. L. (2009). Hybrid multicomponent hydrogels for tissue engineering. Macromolecular Bioscience, 9, 140-156.

Ju, Z. Y., & Kilara, A. (1998). Aggregation induced by calcium chloride and subsequent thermal gelation of whey protein isolate. Journal of Dairy Science, 81, 925-931.

Khan, A. F., Awais, M., Khan, A. S., Tabassum, S., Chaudhry, A. A., & Rehman, I. U. (2013). Raman spectroscopy of natural bone and synthetic apatites. Applied Spectroscopy Reviews, 48, 329-355.

Kokubo, T., Ito, S., Huang, Z. T., Hayashi, T., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. Journal of Biomedical Materials Research, 24, 331-343.

Kolmas, J., Kaflak, A., Zima, A., & Ślósarczyk, A. (2015). Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization. Ceramics International, 41, 5727-5733.

Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62, 600-612.

Lee, J., & Kim, G. (2018). Calcium-deficient hydroxyapatite/collagen/platelet-rich plasma scaffold with controlled release function for hard tissue regeneration. ACS Biomaterials Science & Engineering, 4, 278-289.

Leeuwenburgh, S. C. G., Ana, I. D., & Jansen, J. A. (2010). Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomaterialia, 6, 836-844.

Leeuwenburgh, S. C. G., Jansen, J. A., & Mikos, A. G. (2007). Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Journal of Biomaterials Science. Polymer Edition, 18, 1547-1564.

Li, Z., Mi, W., Wang, H., Su, Y., & He, C. (2014). Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids and Surfaces. B, Biointerfaces, 123, 959-964.

Liu, J., Zhao, L., Ni, L., Qiao, C., Li, D., Sun, H., & Zhang, Z. (2015). The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells. American Journal of Translational Research, 7, 1588-1601.

Maji, K., Dasgupta, S., Pramanik, K., & Bissoyi, A. (2016). Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. International Journal of Biomaterials, 2016, 9825659.

Nguyen, B. T., Balakrishnan, G., Jacquette, B., Nicolai, T., Chassenieux, C., Schmitt, C., & Bovetto, L. (2016). Inhibition and promotion of heat-induced gelation of whey proteins in the presence of calcium by addition of sodium Caseinate. Biomacromolecules, 17, 3800-3807.

Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25, 1945-1962.

Ostojić, S., Pavlović, M., Živić, M., Filipović, Z., Gorjanović, S., Hranisavljević, S., & Dojčinovič, M. (2005). Processing of whey from dairy industry waste. Environmental Chemistry Letters, 3, 29-32.

Paszkiewicz Z, Slosarczyk A. (1999). Method of obtaining highly reactive calcium phosphate powder. Polish Patent PL190486B1.

Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2013). Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules, 14, 1980-1989.

Pulat, M., & Akalin, G. O. (2013). Preparation and characterization of gelatin hydrogel support for immobilization of Candida rugosa lipase. Artificial Cells, Nanomedicine, and Biotechnology, 41, 145-151.

Risser, G. E., Banik, B. L., Brown, J. L., & Catchmark, J. M. (2017). Structural properties of starch-chitosan-gelatin foams and the impact of gelatin on MC3T3 mouse osteoblast cell viability. Journal of Biological Engineering, 11, 43.

Rouabhia, M., Gilbert, V., Wang, H., & Subirade, M. (2007). In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications. Biomedical Materials, 2, S38-S44.

Sarker, B., Rompf, J., Silva, R., Lang, N., Detsch, R., Kaschta, J., … Boccaccini, A. R. (2015). Alginate-based hydrogels with improved adhesive properties for cell encapsulation. International Journal of Biological Macromolecules, 78, 72-78.

Sen, K. S., Duarte Campos, D. F., Köpf, M., Blaeser, A., & Fischer, H. (2018). The effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of mesenchymal stromal cells toward osteogenesis. Advanced Healthcare Materials, 7, 1800343.

Siddharthan, A., Seshadri, S. K., & Sampath Kumar, T. S. (2004). Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. Journal of Materials Science. Materials in Medicine, 15, 1279-1284.

Ślósarczyk, A., Paszkiewicz, Z., & Paluszkiewicz, C. (2005). FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 744-747, 657-661.

Vani, R., Girija, E. K., Elayaraja, K., Prakash Parthiban, S., Kesavamoorthy, R., & Narayana Kalkura, S. (2009). Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. Journal of Materials Science. Materials in Medicine, 20, 43-48.

Wu, J., Liu, J., Shi, Y., & Wan, Y. (2016). Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 64, 161-172.

Xing, Q., Yates, K., Vogt, C., Qian, Z., Frost, M. C., & Zhao, F. (2014). Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Scientific Reports, 4, 4706.

Xu, R. (2009). Effect of whey protein on the proliferation and differentiation of osteoblasts. Journal of Dairy Science, 92, 3014-3018.

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...