• Je něco špatně v tomto záznamu ?

Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering

T. Mandáková, M. Pouch, JR. Brock, IA. Al-Shehbaz, MA. Lysak,

. 2019 ; 31 (11) : 2596-2612. [pub] 20190826

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025557

Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025557
003      
CZ-PrNML
005      
20201222155249.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1105/tpc.19.00366 $2 doi
035    __
$a (PubMed)31451448
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mandáková, Terezie $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic martin.lysak@ceitec.muni.cz terezie.mandakova@ceitec.muni.cz.
245    10
$a Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering / $c T. Mandáková, M. Pouch, JR. Brock, IA. Al-Shehbaz, MA. Lysak,
520    9_
$a Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.
650    _2
$a Arabidopsis $x genetika $7 D017360
650    _2
$a Brassicaceae $x klasifikace $x genetika $7 D019607
650    _2
$a chromozomy rostlin $7 D032461
650    12
$a chromothripsis $7 D000072837
650    12
$a diploidie $7 D004171
650    12
$a molekulární evoluce $7 D019143
650    12
$a genom rostlinný $7 D018745
650    _2
$a hybridizace genetická $7 D006824
650    _2
$a fylogeneze $7 D010802
650    _2
$a polyploidie $7 D011123
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pouch, Milan $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
700    1_
$a Brock, Jordan R $u Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130.
700    1_
$a Al-Shehbaz, Ihsan A $u Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, Missouri 63110.
700    1_
$a Lysak, Martin A $u CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic martin.lysak@ceitec.muni.cz terezie.mandakova@ceitec.muni.cz.
773    0_
$w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 31, č. 11 (2019), s. 2596-2612
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31451448 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155245 $b ABA008
999    __
$a ok $b bmc $g 1599702 $s 1116243
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 31 $c 11 $d 2596-2612 $e 20190826 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace