• Je něco špatně v tomto záznamu ?

Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop

C. Ilgrande, F. Mastroleo, MER. Christiaens, REF. Lindeboom, D. Prat, O. Van Hoey, I. Ambrozova, I. Coninx, W. Heylen, A. Pommerening-Roser, E. Spieck, N. Boon, SE. Vlaeminck, N. Leys, P. Clauwaert,

. 2019 ; 19 (9) : 1167-1176. [pub] 20190604

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025673

To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22°C ± 1°C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5°C ± 2°C) or room temperature (22°C ± 1°C and 21°C ± 0°C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025673
003      
CZ-PrNML
005      
20201222155340.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ast.2018.1973 $2 doi
035    __
$a (PubMed)31161957
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ilgrande, Chiara $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium.
245    10
$a Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop / $c C. Ilgrande, F. Mastroleo, MER. Christiaens, REF. Lindeboom, D. Prat, O. Van Hoey, I. Ambrozova, I. Coninx, W. Heylen, A. Pommerening-Roser, E. Spieck, N. Boon, SE. Vlaeminck, N. Leys, P. Clauwaert,
520    9_
$a To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22°C ± 1°C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5°C ± 2°C) or room temperature (22°C ± 1°C and 21°C ± 0°C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.
650    _2
$a autotrofní procesy $7 D052818
650    _2
$a Bacteria $x metabolismus $7 D001419
650    12
$a exobiologie $7 D018559
650    _2
$a studie proveditelnosti $7 D005240
650    _2
$a mikrobiální viabilita $7 D050296
650    _2
$a nitrifikace $7 D058465
650    12
$a kosmický let $7 D013026
650    12
$a kosmická loď $7 D018531
650    _2
$a teplota $7 D013696
650    _2
$a močovina $x metabolismus $7 D014508
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mastroleo, Felice $u Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
700    1_
$a Christiaens, Marlies E R $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium.
700    1_
$a Lindeboom, Ralph E F $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium. Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands.
700    1_
$a Prat, Delphine $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium.
700    1_
$a Van Hoey, Olivier $u Unit of Research in Dosimetric Applications, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
700    1_
$a Ambrozova, Iva $u Department of Radiation Dosimetry, Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
700    1_
$a Coninx, Ilse $u Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
700    1_
$a Heylen, Wietse $u Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
700    1_
$a Pommerening-Roser, Andreas $u Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
700    1_
$a Spieck, Eva $u Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
700    1_
$a Boon, Nico $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium.
700    1_
$a Vlaeminck, Siegfried E $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium. Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium.
700    1_
$a Leys, Natalie $u Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
700    1_
$a Clauwaert, Peter $u Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium.
773    0_
$w MED00181699 $t Astrobiology $x 1557-8070 $g Roč. 19, č. 9 (2019), s. 1167-1176
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31161957 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155336 $b ABA008
999    __
$a ok $b bmc $g 1599818 $s 1116359
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 19 $c 9 $d 1167-1176 $e 20190604 $i 1557-8070 $m Astrobiology $n Astrobiology $x MED00181699
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...