Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast

EC. Arakel, M. Huranova, AF. Estrada, EM. Rau, A. Spang, B. Schwappach,

. 2019 ; 132 (16) : . [pub] 20190829

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025708

The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI.This article has an associated First Person interview with the first author of the paper.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025708
003      
CZ-PrNML
005      
20201222154043.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1242/jcs.232124 $2 doi
035    __
$a (PubMed)31331965
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Arakel, Eric C $u Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
245    10
$a Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast / $c EC. Arakel, M. Huranova, AF. Estrada, EM. Rau, A. Spang, B. Schwappach,
520    9_
$a The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI.This article has an associated First Person interview with the first author of the paper.
650    _2
$a COP-vezikuly $x genetika $x metabolismus $7 D022181
650    _2
$a obalový proteinový komplex I $x genetika $x metabolismus $7 D020755
650    _2
$a proteiny aktivující GTPasu $x genetika $x metabolismus $7 D020690
650    12
$a biologické modely $7 D008954
650    _2
$a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Huranova, Martina $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland. Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
700    1_
$a Estrada, Alejandro F $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
700    1_
$a Rau, E-Ming $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
700    1_
$a Spang, Anne $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland anne.spang@unibas.ch blanche.schwappach@med.uni-goettingen.de.
700    1_
$a Schwappach, Blanche $u Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany anne.spang@unibas.ch blanche.schwappach@med.uni-goettingen.de. Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
773    0_
$w MED00002576 $t Journal of cell science $x 1477-9137 $g Roč. 132, č. 16 (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31331965 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154039 $b ABA008
999    __
$a ok $b bmc $g 1599853 $s 1116394
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 132 $c 16 $e 20190829 $i 1477-9137 $m Journal of cell science $n J Cell Sci $x MED00002576
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...