-
Je něco špatně v tomto záznamu ?
Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast
EC. Arakel, M. Huranova, AF. Estrada, EM. Rau, A. Spang, B. Schwappach,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1966 do Před 6 měsíci
Open Access Digital Library
od 1853-01-01
Open Access Digital Library
od 1853-01-01
PubMed
31331965
DOI
10.1242/jcs.232124
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- COP-vezikuly genetika metabolismus MeSH
- obalový proteinový komplex I genetika metabolismus MeSH
- proteiny aktivující GTPasu genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI.This article has an associated First Person interview with the first author of the paper.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025708
- 003
- CZ-PrNML
- 005
- 20201222154043.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/jcs.232124 $2 doi
- 035 __
- $a (PubMed)31331965
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Arakel, Eric C $u Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
- 245 10
- $a Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast / $c EC. Arakel, M. Huranova, AF. Estrada, EM. Rau, A. Spang, B. Schwappach,
- 520 9_
- $a The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI.This article has an associated First Person interview with the first author of the paper.
- 650 _2
- $a COP-vezikuly $x genetika $x metabolismus $7 D022181
- 650 _2
- $a obalový proteinový komplex I $x genetika $x metabolismus $7 D020755
- 650 _2
- $a proteiny aktivující GTPasu $x genetika $x metabolismus $7 D020690
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Huranova, Martina $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland. Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Estrada, Alejandro F $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
- 700 1_
- $a Rau, E-Ming $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
- 700 1_
- $a Spang, Anne $u Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland anne.spang@unibas.ch blanche.schwappach@med.uni-goettingen.de.
- 700 1_
- $a Schwappach, Blanche $u Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany anne.spang@unibas.ch blanche.schwappach@med.uni-goettingen.de. Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- 773 0_
- $w MED00002576 $t Journal of cell science $x 1477-9137 $g Roč. 132, č. 16 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31331965 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154039 $b ABA008
- 999 __
- $a ok $b bmc $g 1599853 $s 1116394
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 132 $c 16 $e 20190829 $i 1477-9137 $m Journal of cell science $n J Cell Sci $x MED00002576
- LZP __
- $a Pubmed-20201125