• Je něco špatně v tomto záznamu ?

Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization

A. Oochi, J. Hajny, K. Fukui, Y. Nakao, M. Gallei, M. Quareshy, K. Takahashi, T. Kinoshita, SR. Harborough, S. Kepinski, H. Kasahara, R. Napier, J. Friml, KI. Hayashi,

. 2019 ; 180 (2) : 1152-1165. [pub] 20190401

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025842

Grantová podpora
BB/L009366/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025842
003      
CZ-PrNML
005      
20201222155505.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.19.00201 $2 doi
035    __
$a (PubMed)30936248
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Oochi, Akihiro $u Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
245    10
$a Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization / $c A. Oochi, J. Hajny, K. Fukui, Y. Nakao, M. Gallei, M. Quareshy, K. Takahashi, T. Kinoshita, SR. Harborough, S. Kepinski, H. Kasahara, R. Napier, J. Friml, KI. Hayashi,
520    9_
$a Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.
650    _2
$a Arabidopsis $x účinky léků $x metabolismus $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $7 D029681
650    _2
$a biologický transport $x účinky léků $7 D001692
650    _2
$a buněčná membrána $x účinky léků $x metabolismus $7 D002462
650    12
$a endocytóza $x účinky léků $7 D004705
650    _2
$a gravitropismus $x účinky léků $7 D018522
650    _2
$a hypokotyl $x účinky léků $x růst a vývoj $7 D018546
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a fenotyp $7 D010641
650    _2
$a fenylacetáty $x farmakologie $7 D010648
650    _2
$a kořeny rostlin $x účinky léků $x růst a vývoj $7 D018517
650    _2
$a výhonky rostlin $x metabolismus $7 D018520
650    _2
$a signální transdukce $7 D015398
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hajny, Jakub $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Fukui, Kosuke $u Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
700    1_
$a Nakao, Yukio $u Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
700    1_
$a Gallei, Michelle $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
700    1_
$a Quareshy, Mussa $u School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
700    1_
$a Takahashi, Koji $u Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
700    1_
$a Kinoshita, Toshinori $u Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
700    1_
$a Harborough, Sigurd Ramans $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
700    1_
$a Kepinski, Stefan $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
700    1_
$a Kasahara, Hiroyuki $u Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan. RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan.
700    1_
$a Napier, Richard $u School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
700    1_
$a Friml, Jiří $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
700    1_
$a Hayashi, Ken-Ichiro $u Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan hayashi@dbc.ous.ac.jp.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 180, č. 2 (2019), s. 1152-1165
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30936248 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155501 $b ABA008
999    __
$a ok $b bmc $g 1599987 $s 1116528
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 180 $c 2 $d 1152-1165 $e 20190401 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
GRA    __
$a BB/L009366/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace