-
Je něco špatně v tomto záznamu ?
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance
G. Enkavi, M. Javanainen, W. Kulig, T. Róg, I. Vattulainen,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologické modely * MeSH
- fosfolipidy chemie metabolismus MeSH
- kyseliny karboxylové chemie metabolismus MeSH
- lidé MeSH
- lipidomika metody MeSH
- membránové lipidy chemie metabolismus MeSH
- membrány chemie metabolismus fyziologie MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025857
- 003
- CZ-PrNML
- 005
- 20201222155513.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.chemrev.8b00538 $2 doi
- 035 __
- $a (PubMed)30859819
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Enkavi, Giray $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland.
- 245 10
- $a Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance / $c G. Enkavi, M. Javanainen, W. Kulig, T. Róg, I. Vattulainen,
- 520 9_
- $a Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kyseliny karboxylové $x chemie $x metabolismus $7 D002264
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lipidomika $x metody $7 D000081362
- 650 _2
- $a membránové lipidy $x chemie $x metabolismus $7 D008563
- 650 _2
- $a membrány $x chemie $x metabolismus $x fyziologie $7 D008566
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a fosfolipidy $x chemie $x metabolismus $7 D010743
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Javanainen, Matti $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo naḿesti 542/2 , 16610 Prague , Czech Republic. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland.
- 700 1_
- $a Kulig, Waldemar $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland.
- 700 1_
- $a Róg, Tomasz $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland.
- 700 1_
- $a Vattulainen, Ilpo $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland. MEMPHYS-Center for Biomembrane Physics.
- 773 0_
- $w MED00002107 $t Chemical reviews $x 1520-6890 $g Roč. 119, č. 9 (2019), s. 5607-5774
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30859819 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155509 $b ABA008
- 999 __
- $a ok $b bmc $g 1600002 $s 1116543
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 119 $c 9 $d 5607-5774 $e 20190312 $i 1520-6890 $m Chemical reviews $n Chem Rev $x MED00002107
- LZP __
- $a Pubmed-20201125