• Je něco špatně v tomto záznamu ?

Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance

G. Enkavi, M. Javanainen, W. Kulig, T. Róg, I. Vattulainen,

. 2019 ; 119 (9) : 5607-5774. [pub] 20190312

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025857

Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025857
003      
CZ-PrNML
005      
20201222155513.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.chemrev.8b00538 $2 doi
035    __
$a (PubMed)30859819
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Enkavi, Giray $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland.
245    10
$a Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance / $c G. Enkavi, M. Javanainen, W. Kulig, T. Róg, I. Vattulainen,
520    9_
$a Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
650    _2
$a zvířata $7 D000818
650    _2
$a kyseliny karboxylové $x chemie $x metabolismus $7 D002264
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    _2
$a lipidomika $x metody $7 D000081362
650    _2
$a membránové lipidy $x chemie $x metabolismus $7 D008563
650    _2
$a membrány $x chemie $x metabolismus $x fyziologie $7 D008566
650    12
$a biologické modely $7 D008954
650    _2
$a fosfolipidy $x chemie $x metabolismus $7 D010743
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Javanainen, Matti $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo naḿesti 542/2 , 16610 Prague , Czech Republic. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland.
700    1_
$a Kulig, Waldemar $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland.
700    1_
$a Róg, Tomasz $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland.
700    1_
$a Vattulainen, Ilpo $u Department of Physics , University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland. Computational Physics Laboratory , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland. MEMPHYS-Center for Biomembrane Physics.
773    0_
$w MED00002107 $t Chemical reviews $x 1520-6890 $g Roč. 119, č. 9 (2019), s. 5607-5774
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30859819 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155509 $b ABA008
999    __
$a ok $b bmc $g 1600002 $s 1116543
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 119 $c 9 $d 5607-5774 $e 20190312 $i 1520-6890 $m Chemical reviews $n Chem Rev $x MED00002107
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...