Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants

P. Wang, M. Calvo-Polanco, G. Reyt, M. Barberon, C. Champeyroux, V. Santoni, C. Maurel, RB. Franke, K. Ljung, O. Novak, N. Geldner, Y. Boursiac, DE. Salt,

. 2019 ; 9 (1) : 4227. [pub] 20190312

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025912

Grantová podpora
BB/N023927/1 Biotechnology and Biological Sciences Research Council - United Kingdom

The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots. Loss of integrity of the Casparian strip-based apoplastic barrier is sensed by the leakage of a small peptide from the stele into the cortex. Here, we report that such sensing of barrier integrity leads to the rebalancing of water and mineral nutrient uptake, compensating for breakage of Casparian strips. This rebalancing involves both a reduction in root hydraulic conductivity driven by deactivation of aquaporins, and downstream limitation of ion leakage through deposition of suberin. These responses in the root are also coupled to a reduction in water demand in the shoot mediated by ABA-dependent stomatal closure.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025912
003      
CZ-PrNML
005      
20201222154147.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-40588-5 $2 doi
035    __
$a (PubMed)30862916
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Wang, Peng $u Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK. Department of Agronomy and Horticulture, University of Nebraska Lincoln, Lincoln, NE, 68588-0660, USA.
245    10
$a Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants / $c P. Wang, M. Calvo-Polanco, G. Reyt, M. Barberon, C. Champeyroux, V. Santoni, C. Maurel, RB. Franke, K. Ljung, O. Novak, N. Geldner, Y. Boursiac, DE. Salt,
520    9_
$a The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots. Loss of integrity of the Casparian strip-based apoplastic barrier is sensed by the leakage of a small peptide from the stele into the cortex. Here, we report that such sensing of barrier integrity leads to the rebalancing of water and mineral nutrient uptake, compensating for breakage of Casparian strips. This rebalancing involves both a reduction in root hydraulic conductivity driven by deactivation of aquaporins, and downstream limitation of ion leakage through deposition of suberin. These responses in the root are also coupled to a reduction in water demand in the shoot mediated by ABA-dependent stomatal closure.
650    _2
$a Arabidopsis $x genetika $x metabolismus $7 D017360
650    _2
$a biologický transport $x fyziologie $7 D001692
650    _2
$a buněčná stěna $x genetika $x metabolismus $7 D002473
650    _2
$a difuze $7 D004058
650    _2
$a lignin $x genetika $x metabolismus $7 D008031
650    _2
$a lipidy $x genetika $7 D008055
650    _2
$a kořeny rostlin $x genetika $x metabolismus $7 D018517
650    _2
$a voda $x metabolismus $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Calvo-Polanco, Monica $u Biochimie & Physiologie Moléculaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
700    1_
$a Reyt, Guilhem $u Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
700    1_
$a Barberon, Marie $u Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland. Department of Botany and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
700    1_
$a Champeyroux, Chloe $u Biochimie & Physiologie Moléculaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
700    1_
$a Santoni, Véronique $u Biochimie & Physiologie Moléculaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
700    1_
$a Maurel, Christophe $u Biochimie & Physiologie Moléculaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
700    1_
$a Franke, Rochus B $u Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, 53115, Bonn, Germany.
700    1_
$a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
700    1_
$a Novak, Ondrej $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden. Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic.
700    1_
$a Geldner, Niko $u Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
700    1_
$a Boursiac, Yann $u Biochimie & Physiologie Moléculaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
700    1_
$a Salt, David E $u Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK. david.salt@nottingham.ac.uk. Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK. david.salt@nottingham.ac.uk.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 4227
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30862916 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154142 $b ABA008
999    __
$a ok $b bmc $g 1600057 $s 1116598
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 4227 $e 20190312 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a BB/N023927/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...