-
Je něco špatně v tomto záznamu ?
Early warning systems in inpatient anorexia nervosa: A validation of the MARSIPAN-based modified early warning system
K. Ioannidis, J. Serfontein, J. Deakin, M. Bruneau, A. Ciobanca, L. Holt, S. Snelson, J. Stochl,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
Grantová podpora
National Institute for Health Research - International
PubMed
32542781
DOI
10.1002/erv.2753
Knihovny.cz E-zdroje
- MeSH
- časná diagnóza * MeSH
- dospělí MeSH
- hospitalizace * MeSH
- klinické zhoršení * MeSH
- lidé MeSH
- mentální anorexie terapie MeSH
- monitorování fyziologických funkcí metody MeSH
- plocha pod křivkou MeSH
- reprodukovatelnost výsledků MeSH
- ROC křivka MeSH
- systém včasného varování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
OBJECTIVE: We aimed to evaluate the validity of a MARSIPAN-guidance-adapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. METHODS: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machine-learning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. RESULTS: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). CONCLUSION: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20027882
- 003
- CZ-PrNML
- 005
- 20210114152539.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/erv.2753 $2 doi
- 035 __
- $a (PubMed)32542781
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Ioannidis, Konstantinos $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK. Department of Psychiatry, University of Cambridge, Cambridge, UK.
- 245 10
- $a Early warning systems in inpatient anorexia nervosa: A validation of the MARSIPAN-based modified early warning system / $c K. Ioannidis, J. Serfontein, J. Deakin, M. Bruneau, A. Ciobanca, L. Holt, S. Snelson, J. Stochl,
- 520 9_
- $a OBJECTIVE: We aimed to evaluate the validity of a MARSIPAN-guidance-adapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. METHODS: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machine-learning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. RESULTS: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). CONCLUSION: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mentální anorexie $x terapie $7 D000856
- 650 _2
- $a plocha pod křivkou $7 D019540
- 650 12
- $a klinické zhoršení $7 D000075902
- 650 12
- $a časná diagnóza $7 D042241
- 650 _2
- $a systém včasného varování $7 D000080162
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a hospitalizace $7 D006760
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a monitorování fyziologických funkcí $x metody $7 D008991
- 650 _2
- $a ROC křivka $7 D012372
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a pozorovací studie $7 D064888
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Serfontein, Jaco $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Deakin, Julia $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Bruneau, Melanie $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Ciobanca, Anya $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Holt, Leah $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Snelson, Sarah $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
- 700 1_
- $a Stochl, Jan $u Department of Psychiatry, University of Cambridge, Cambridge, UK. Department of Kinanthropology, Charles University in Prague, Staré Město, Czechia.
- 773 0_
- $w MED00007941 $t European eating disorders review : the journal of the Eating Disorders Association $x 1099-0968 $g Roč. 28, č. 5 (2020), s. 551-558
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32542781 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114152536 $b ABA008
- 999 __
- $a ok $b bmc $g 1608217 $s 1119062
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 28 $c 5 $d 551-558 $e 20200615 $i 1099-0968 $m European eating disorders review $n Eur Eat Disord Rev $x MED00007941
- GRA __
- $p National Institute for Health Research $2 International
- LZP __
- $a Pubmed-20210105