• Je něco špatně v tomto záznamu ?

Early warning systems in inpatient anorexia nervosa: A validation of the MARSIPAN-based modified early warning system

K. Ioannidis, J. Serfontein, J. Deakin, M. Bruneau, A. Ciobanca, L. Holt, S. Snelson, J. Stochl,

. 2020 ; 28 (5) : 551-558. [pub] 20200615

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20027882

Grantová podpora
National Institute for Health Research - International

OBJECTIVE: We aimed to evaluate the validity of a MARSIPAN-guidance-adapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. METHODS: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machine-learning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. RESULTS: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). CONCLUSION: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20027882
003      
CZ-PrNML
005      
20210114152539.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/erv.2753 $2 doi
035    __
$a (PubMed)32542781
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Ioannidis, Konstantinos $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK. Department of Psychiatry, University of Cambridge, Cambridge, UK.
245    10
$a Early warning systems in inpatient anorexia nervosa: A validation of the MARSIPAN-based modified early warning system / $c K. Ioannidis, J. Serfontein, J. Deakin, M. Bruneau, A. Ciobanca, L. Holt, S. Snelson, J. Stochl,
520    9_
$a OBJECTIVE: We aimed to evaluate the validity of a MARSIPAN-guidance-adapted Early Warning System (MARSI MEWS) and compare it to the National Early Warning Score (NEWS) and an adapted version of the Physical Risk in Eating Disorders Index (PREDIX), to ascertain whether current practice is comparable to best-practice standards. METHODS: We collated 3,937 observations from 36 inpatients from Addenbrookes Hospital over 2017-2018 and used three independent raters to create a "gold standard" of deteriorating cases. We ascertained performance metrics (Receiver Operating Characteristic Area Under the curve) for MARSI MEWS, NEWS and PREDIX; we also tested the proof of concept of a machine-learning-based early-warning-system (ML-EWS) using cross-validation and out-of-sample prediction of cases. RESULTS: The MARSI MEWS system showed higher ROC AUC (0.916) compared to NEWS (0.828) or PREDIX (0.865). ML-EWS (random forest) performed well at independent samples analysis (0.980) and multilevel analysis (0.922). CONCLUSION: MARSI MEWS seems most suitable for identifying critically deteriorating cases in anorexia nervosa inpatient population. We did not examine community practice in which the PREDIX arguably remains the best to ascertain deteriorating cases. Our results also provide a first proof of concept for the development of artificial-intelligence-based early warning systems in anorexia nervosa. Implications for inpatient clinical practice in eating disorders are discussed.
650    _2
$a dospělí $7 D000328
650    _2
$a mentální anorexie $x terapie $7 D000856
650    _2
$a plocha pod křivkou $7 D019540
650    12
$a klinické zhoršení $7 D000075902
650    12
$a časná diagnóza $7 D042241
650    _2
$a systém včasného varování $7 D000080162
650    _2
$a ženské pohlaví $7 D005260
650    12
$a hospitalizace $7 D006760
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a monitorování fyziologických funkcí $x metody $7 D008991
650    _2
$a ROC křivka $7 D012372
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a pozorovací studie $7 D064888
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Serfontein, Jaco $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Deakin, Julia $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Bruneau, Melanie $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Ciobanca, Anya $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Holt, Leah $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Snelson, Sarah $u Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
700    1_
$a Stochl, Jan $u Department of Psychiatry, University of Cambridge, Cambridge, UK. Department of Kinanthropology, Charles University in Prague, Staré Město, Czechia.
773    0_
$w MED00007941 $t European eating disorders review : the journal of the Eating Disorders Association $x 1099-0968 $g Roč. 28, č. 5 (2020), s. 551-558
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32542781 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114152536 $b ABA008
999    __
$a ok $b bmc $g 1608217 $s 1119062
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 28 $c 5 $d 551-558 $e 20200615 $i 1099-0968 $m European eating disorders review $n Eur Eat Disord Rev $x MED00007941
GRA    __
$p National Institute for Health Research $2 International
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...