• Je něco špatně v tomto záznamu ?

EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities

J. Hon, S. Borko, J. Stourac, Z. Prokop, J. Zendulka, D. Bednar, T. Martinek, J. Damborsky,

. 2020 ; 48 (W1) : W104-W109. [pub] 20200702

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028032

Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner-a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page. EnzymeMiner is a universal tool applicable to any enzyme family that provides an interactive and easy-to-use web interface freely available at https://loschmidt.chemi.muni.cz/enzymeminer/.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028032
003      
CZ-PrNML
005      
20210114152833.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkaa372 $2 doi
035    __
$a (PubMed)32392342
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hon, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
245    10
$a EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities / $c J. Hon, S. Borko, J. Stourac, Z. Prokop, J. Zendulka, D. Bednar, T. Martinek, J. Damborsky,
520    9_
$a Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner-a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page. EnzymeMiner is a universal tool applicable to any enzyme family that provides an interactive and easy-to-use web interface freely available at https://loschmidt.chemi.muni.cz/enzymeminer/.
650    _2
$a biokatalýza $7 D055162
650    _2
$a stabilita enzymů $7 D004795
650    _2
$a enzymy $x chemie $x metabolismus $7 D004798
650    _2
$a hydrolasy $x chemie $7 D006867
650    _2
$a sekvenční analýza proteinů $7 D020539
650    _2
$a sekvenční homologie aminokyselin $7 D017386
650    12
$a software $7 D012984
650    _2
$a rozpustnost $7 D012995
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Borko, Simeon $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic.
700    1_
$a Stourac, Jan $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Prokop, Zbynek $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Zendulka, Jaroslav $u IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic.
700    1_
$a Bednar, David $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Martinek, Tomas $u IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic.
700    1_
$a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 48, č. W1 (2020), s. W104-W109
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32392342 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114152831 $b ABA008
999    __
$a ok $b bmc $g 1608367 $s 1119212
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 48 $c W1 $d W104-W109 $e 20200702 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...