-
Je něco špatně v tomto záznamu ?
CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data
Š. Kouřil, J. de Sousa, J. Václavík, D. Friedecký, T. Adam,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1996 do Před 1 rokem
PubMed Central
od 2007
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1998-01-01
Oxford Journals Open Access Collection
od 1985-01-01 do 2022-09-30
Oxford Journals Open Access Collection
od 1985-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
- MeSH
- algoritmy MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie MeSH
- metabolomika * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SUMMARY: Untargeted liquid chromatography-high-resolution mass spectrometry analysis produces a large number of features which correspond to the potential compounds in the sample that is analyzed. During the data processing, it is necessary to merge features associated with one compound to prevent multiplicities in the data and possible misidentification. The processing tools that are currently employed use complex algorithms to detect abundances, such as adducts or isotopes. However, most of them are not able to deal with unpredictable adducts and in-source fragments. We introduce a simple open-source R-script CROP based on Pearson pairwise correlations and retention time together with a graphical representation of the correlation network to remove these redundant features. AVAILABILITY AND IMPLEMENTATION: The CROP R-script is available online at www.github.com/rendju/CROP under GNU GPL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028193
- 003
- CZ-PrNML
- 005
- 20240125121405.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/bioinformatics/btaa012 $2 doi
- 035 __
- $a (PubMed)31930393
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kouřil, Štěpán $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic. $7 xx0313061
- 245 10
- $a CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data / $c Š. Kouřil, J. de Sousa, J. Václavík, D. Friedecký, T. Adam,
- 520 9_
- $a SUMMARY: Untargeted liquid chromatography-high-resolution mass spectrometry analysis produces a large number of features which correspond to the potential compounds in the sample that is analyzed. During the data processing, it is necessary to merge features associated with one compound to prevent multiplicities in the data and possible misidentification. The processing tools that are currently employed use complex algorithms to detect abundances, such as adducts or isotopes. However, most of them are not able to deal with unpredictable adducts and in-source fragments. We introduce a simple open-source R-script CROP based on Pearson pairwise correlations and retention time together with a graphical representation of the correlation network to remove these redundant features. AVAILABILITY AND IMPLEMENTATION: The CROP R-script is available online at www.github.com/rendju/CROP under GNU GPL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a chromatografie kapalinová $7 D002853
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 12
- $a metabolomika $7 D055432
- 650 12
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a de Sousa, Julie $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc 779 00, Czech Republic.
- 700 1_
- $a Václavík, Jan $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic.
- 700 1_
- $a Friedecký, David $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic.
- 700 1_
- $a Adam, Tomáš $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic.
- 773 0_
- $w MED00008115 $t Bioinformatics $x 1367-4811 $g Roč. 36, č. 9 (2020), s. 2941-2942
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31930393 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20240125121359 $b ABA008
- 999 __
- $a ok $b bmc $g 1608528 $s 1119373
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 36 $c 9 $d 2941-2942 $e 20200501 $i 1367-4811 $m Bioinformatics $n Bioinformatics $x MED00008115
- LZP __
- $a Pubmed-20210105