Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data

Š. Kouřil, J. de Sousa, J. Václavík, D. Friedecký, T. Adam,

. 2020 ; 36 (9) : 2941-2942. [pub] 20200501

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028193

SUMMARY: Untargeted liquid chromatography-high-resolution mass spectrometry analysis produces a large number of features which correspond to the potential compounds in the sample that is analyzed. During the data processing, it is necessary to merge features associated with one compound to prevent multiplicities in the data and possible misidentification. The processing tools that are currently employed use complex algorithms to detect abundances, such as adducts or isotopes. However, most of them are not able to deal with unpredictable adducts and in-source fragments. We introduce a simple open-source R-script CROP based on Pearson pairwise correlations and retention time together with a graphical representation of the correlation network to remove these redundant features. AVAILABILITY AND IMPLEMENTATION: The CROP R-script is available online at www.github.com/rendju/CROP under GNU GPL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028193
003      
CZ-PrNML
005      
20240125121405.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/bioinformatics/btaa012 $2 doi
035    __
$a (PubMed)31930393
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kouřil, Štěpán $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic. $7 xx0313061
245    10
$a CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data / $c Š. Kouřil, J. de Sousa, J. Václavík, D. Friedecký, T. Adam,
520    9_
$a SUMMARY: Untargeted liquid chromatography-high-resolution mass spectrometry analysis produces a large number of features which correspond to the potential compounds in the sample that is analyzed. During the data processing, it is necessary to merge features associated with one compound to prevent multiplicities in the data and possible misidentification. The processing tools that are currently employed use complex algorithms to detect abundances, such as adducts or isotopes. However, most of them are not able to deal with unpredictable adducts and in-source fragments. We introduce a simple open-source R-script CROP based on Pearson pairwise correlations and retention time together with a graphical representation of the correlation network to remove these redundant features. AVAILABILITY AND IMPLEMENTATION: The CROP R-script is available online at www.github.com/rendju/CROP under GNU GPL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
650    _2
$a algoritmy $7 D000465
650    _2
$a chromatografie kapalinová $7 D002853
650    _2
$a hmotnostní spektrometrie $7 D013058
650    12
$a metabolomika $7 D055432
650    12
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a de Sousa, Julie $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc 779 00, Czech Republic.
700    1_
$a Václavík, Jan $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic.
700    1_
$a Friedecký, David $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic.
700    1_
$a Adam, Tomáš $u Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc 779 00, Czech Republic. Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc 779 00, Czech Republic.
773    0_
$w MED00008115 $t Bioinformatics $x 1367-4811 $g Roč. 36, č. 9 (2020), s. 2941-2942
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31930393 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20240125121359 $b ABA008
999    __
$a ok $b bmc $g 1608528 $s 1119373
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 36 $c 9 $d 2941-2942 $e 20200501 $i 1367-4811 $m Bioinformatics $n Bioinformatics $x MED00008115
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...