-
Je něco špatně v tomto záznamu ?
Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors
N. Rohaizad, CC. Mayorga-Martinez, Z. Sofer, RD. Webster, M. Pumera,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
- MeSH
- biosenzitivní techniky metody MeSH
- elektrochemické techniky MeSH
- elektrody MeSH
- enzymy analýza chemie MeSH
- fosfatidylethanolaminy chemie MeSH
- niob chemie MeSH
- senzitivita a specificita MeSH
- spektrální analýza MeSH
- titan chemie MeSH
- Publikační typ
- časopisecké články MeSH
There is an assortment of layered transition metal dichalcogenides (TMDs), about 40 reported compounds, each with its unique polymorph and properties. Group 4 TMD, titanium disulfide (TiS2), possess high electronic conductivity and light weight amongst other attractive features. In consideration for electrochemical and thermoelectrical applications, doping is a promising approach to enhance its practicability. The introduction of foreign atoms or compositional variance may improve existing properties or grant access to new ones. Moving away from the more intensively studied and successfully doped group 6 MoS2 and WS2, TiS2 is doped with varying levels of niobium (Nb) via controlled heating of stoichiometric amounts to yield Ti1-xNbxS2 where x = 0.05, 0.1, 0.2. Structural effects are discussed together with two doping parameters, nature and concentration of dopant. Characterisation data reveal retention of 1T-phase polymorph despite formation of TiS3 nanobelts upon doping. Fundamental electrochemical properties such as heterogenous electron transfer rates and its charge transfer resistance are compared amongst the materials of interest. A selective and sensitive 2nd generation electrochemical biosensor is prepared using Ti0.95Nb0.05S2/GOx/GTA since it is the most superior material in glucose detection.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028194
- 003
- CZ-PrNML
- 005
- 20211108133616.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bios.2020.112114 $2 doi
- 035 __
- $a (PubMed)32217336
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Rohaizad, Nasuha $u NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore.
- 245 10
- $a Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors / $c N. Rohaizad, CC. Mayorga-Martinez, Z. Sofer, RD. Webster, M. Pumera,
- 520 9_
- $a There is an assortment of layered transition metal dichalcogenides (TMDs), about 40 reported compounds, each with its unique polymorph and properties. Group 4 TMD, titanium disulfide (TiS2), possess high electronic conductivity and light weight amongst other attractive features. In consideration for electrochemical and thermoelectrical applications, doping is a promising approach to enhance its practicability. The introduction of foreign atoms or compositional variance may improve existing properties or grant access to new ones. Moving away from the more intensively studied and successfully doped group 6 MoS2 and WS2, TiS2 is doped with varying levels of niobium (Nb) via controlled heating of stoichiometric amounts to yield Ti1-xNbxS2 where x = 0.05, 0.1, 0.2. Structural effects are discussed together with two doping parameters, nature and concentration of dopant. Characterisation data reveal retention of 1T-phase polymorph despite formation of TiS3 nanobelts upon doping. Fundamental electrochemical properties such as heterogenous electron transfer rates and its charge transfer resistance are compared amongst the materials of interest. A selective and sensitive 2nd generation electrochemical biosensor is prepared using Ti0.95Nb0.05S2/GOx/GTA since it is the most superior material in glucose detection.
- 650 _2
- $a biosenzitivní techniky $x metody $7 D015374
- 650 _2
- $a elektrochemické techniky $7 D055664
- 650 _2
- $a elektrody $7 D004566
- 650 _2
- $a enzymy $x analýza $x chemie $7 D004798
- 650 _2
- $a niob $x chemie $7 D009556
- 650 _2
- $a fosfatidylethanolaminy $x chemie $7 D010714
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a spektrální analýza $7 D013057
- 650 _2
- $a titan $x chemie $7 D014025
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mayorga-Martinez, Carmen C $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic.
- 700 1_
- $a Sofer, Zdeněk, $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic. $d 1981- $7 ntk2016922574
- 700 1_
- $a Webster, Richard D $u Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
- 700 1_
- $a Pumera, Martin, $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan; Future Energy and Innovation Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic. Electronic address: pumera.research@gmail.com. $d 1974- $7 uk2015866290
- 773 0_
- $w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 155, č. - (2020), s. 112114
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32217336 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20211108133615 $b ABA008
- 999 __
- $a ok $b bmc $g 1608529 $s 1119374
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 155 $c - $d 112114 $e 20200222 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
- LZP __
- $a Pubmed-20210105