• Je něco špatně v tomto záznamu ?

Ecophysiological Features of Polar Soil Unicellular Microalgae1

SP. Shukla, J. Kvíderová, L. Adamec, J. Elster,

. 2020 ; 56 (2) : 481-495. [pub] 20200122

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028326

Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d-1 , (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162-0.341 · d-1 , and (iii) warm-preferring temperatures above 20°C and growth rate 0.249-0.357 · d-1 . Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN :RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028326
003      
CZ-PrNML
005      
20210114153531.0
007      
ta
008      
210105s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/jpy.12953 $2 doi
035    __
$a (PubMed)31833070
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Shukla, Satya P $u Central Institute of Fisheries and Education, Indian Council of Agricultural Research, Panch Marg, Off. Yari Road, Versova, Andheri (west), Mumbai, 400 061, India. Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic.
245    10
$a Ecophysiological Features of Polar Soil Unicellular Microalgae1 / $c SP. Shukla, J. Kvíderová, L. Adamec, J. Elster,
520    9_
$a Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d-1 , (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162-0.341 · d-1 , and (iii) warm-preferring temperatures above 20°C and growth rate 0.249-0.357 · d-1 . Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN :RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.
650    12
$a mikrořasy $7 D058086
650    _2
$a fotosyntéza $7 D010788
650    _2
$a prospektivní studie $7 D011446
650    _2
$a půda $7 D012987
650    _2
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kvíderová, Jana $u Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic. Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic.
700    1_
$a Adamec, Lubomír $u Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic.
700    1_
$a Elster, Josef $u Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic. Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic.
773    0_
$w MED00002903 $t Journal of phycology $x 1529-8817 $g Roč. 56, č. 2 (2020), s. 481-495
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31833070 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153529 $b ABA008
999    __
$a ok $b bmc $g 1608661 $s 1119506
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 56 $c 2 $d 481-495 $e 20200122 $i 1529-8817 $m Journal of phycology $n J Phycol $x MED00002903
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...