-
Je něco špatně v tomto záznamu ?
3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering
V. Goranov, T. Shelyakova, R. De Santis, Y. Haranava, A. Makhaniok, A. Gloria, A. Tampieri, A. Russo, E. Kon, M. Marcacci, L. Ambrosio, VA. Dediu,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
PubMed Central
od 2011
Europe PubMed Central
od 2011
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2011-12-01
- MeSH
- biokompatibilní materiály chemie MeSH
- biologické modely MeSH
- chemické modely MeSH
- endoteliální buňky pupečníkové žíly (lidské) fyziologie MeSH
- fyziologická neovaskularizace fyziologie MeSH
- lidé MeSH
- magnetické nanočástice chemie MeSH
- magnetické pole MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- nanomedicína metody MeSH
- osteogeneze fyziologie MeSH
- ověření koncepční studie MeSH
- počítačová simulace MeSH
- regenerace kostí MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
BioDevice Systems Praha 10 Vršovice Bulharská 996 20 Czech Republic
Institute for Nanostructured Materials CNR ISMN Via Gobetti 101 40129 Bologna Italy
Institute of Science and Technology for Ceramics CNR ISTEC Via Granarolo 64 48018 Faenza Italy
IRCCS Istituto Ortopedico Rizzoli Via di Barbiano 1 10 40136 Bologna Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028509
- 003
- CZ-PrNML
- 005
- 20210114154105.0
- 007
- ta
- 008
- 210105s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-020-58738-5 $2 doi
- 035 __
- $a (PubMed)32041994
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Goranov, V $u Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy. biodevicesystems@gmail.com. BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic. biodevicesystems@gmail.com.
- 245 10
- $a 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering / $c V. Goranov, T. Shelyakova, R. De Santis, Y. Haranava, A. Makhaniok, A. Gloria, A. Tampieri, A. Russo, E. Kon, M. Marcacci, L. Ambrosio, VA. Dediu,
- 520 9_
- $a A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
- 650 _2
- $a biokompatibilní materiály $x chemie $7 D001672
- 650 _2
- $a regenerace kostí $7 D001861
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a endoteliální buňky pupečníkové žíly (lidské) $x fyziologie $7 D061307
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetické pole $7 D060526
- 650 _2
- $a magnetické nanočástice $x chemie $7 D058185
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a mezenchymální kmenové buňky $x fyziologie $7 D059630
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a chemické modely $7 D008956
- 650 _2
- $a nanomedicína $x metody $7 D050997
- 650 _2
- $a fyziologická neovaskularizace $x fyziologie $7 D018919
- 650 _2
- $a osteogeneze $x fyziologie $7 D010012
- 650 _2
- $a ověření koncepční studie $7 D000075082
- 650 _2
- $a tkáňové inženýrství $x metody $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Shelyakova, T $u IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy. tatiana.shelyakova@ior.it.
- 700 1_
- $a De Santis, R $u Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy.
- 700 1_
- $a Haranava, Y $u BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic.
- 700 1_
- $a Makhaniok, A $u BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic.
- 700 1_
- $a Gloria, A $u Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy.
- 700 1_
- $a Tampieri, A $u Institute of Science and Technology for Ceramics, CNR-ISTEC, Via Granarolo 64, 48018, Faenza, Italy.
- 700 1_
- $a Russo, A $u IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
- 700 1_
- $a Kon, E $u Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy. Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy. First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
- 700 1_
- $a Marcacci, M $u Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy. Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy.
- 700 1_
- $a Ambrosio, L $u Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy.
- 700 1_
- $a Dediu, V A $u Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy. valentin.dediu@cnr.it.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 2289
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32041994 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154102 $b ABA008
- 999 __
- $a ok $b bmc $g 1608844 $s 1119689
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 10 $c 1 $d 2289 $e 20200210 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105